Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Generative adversarial networks accurately reconstruct pan-cancer histology from pathologic, genomic, and radiographic latent features
Science Advances ( IF 11.7 ) Pub Date : 2024-11-15 , DOI: 10.1126/sciadv.adq0856 Frederick M. Howard, Hanna M. Hieromnimon, Siddhi Ramesh, James Dolezal, Sara Kochanny, Qianchen Zhang, Brad Feiger, Joseph Peterson, Cheng Fan, Charles M. Perou, Jasmine Vickery, Megan Sullivan, Kimberly Cole, Galina Khramtsova, Alexander T. Pearson
Science Advances ( IF 11.7 ) Pub Date : 2024-11-15 , DOI: 10.1126/sciadv.adq0856 Frederick M. Howard, Hanna M. Hieromnimon, Siddhi Ramesh, James Dolezal, Sara Kochanny, Qianchen Zhang, Brad Feiger, Joseph Peterson, Cheng Fan, Charles M. Perou, Jasmine Vickery, Megan Sullivan, Kimberly Cole, Galina Khramtsova, Alexander T. Pearson
Artificial intelligence models have been increasingly used in the analysis of tumor histology to perform tasks ranging from routine classification to identification of molecular features. These approaches distill cancer histologic images into high-level features, which are used in predictions, but understanding the biologic meaning of such features remains challenging. We present and validate a custom generative adversarial network—HistoXGAN—capable of reconstructing representative histology using feature vectors produced by common feature extractors. We evaluate HistoXGAN across 29 cancer subtypes and demonstrate that reconstructed images retain information regarding tumor grade, histologic subtype, and gene expression patterns. We leverage HistoXGAN to illustrate the underlying histologic features for deep learning models for actionable mutations, identify model reliance on histologic batch effect in predictions, and demonstrate accurate reconstruction of tumor histology from radiographic imaging for a “virtual biopsy.”
中文翻译:
生成对抗网络从病理学、基因组学和放射学潜在特征中准确重建泛癌组织学
人工智能模型已越来越多地用于肿瘤组织学分析,以执行从常规分类到分子特征鉴定的各种任务。这些方法将癌症组织学图像提炼成高级特征,用于预测,但理解这些特征的生物学意义仍然具有挑战性。我们提出并验证了一个定制的生成对抗网络 — HistoXGAN — 能够使用常见特征提取器生成的特征向量重建代表性组织学。我们评估了 29 种癌症亚型的 HistoXGAN,并证明重建的图像保留了有关肿瘤分级、组织学亚型和基因表达模式的信息。我们利用 HistoXGAN 来说明可操作突变的深度学习模型的潜在组织学特征,确定模型在预测中对组织学批量效应的依赖性,并展示从放射学成像中准确重建肿瘤组织学以进行“虚拟活检”。
更新日期:2024-11-15
中文翻译:
生成对抗网络从病理学、基因组学和放射学潜在特征中准确重建泛癌组织学
人工智能模型已越来越多地用于肿瘤组织学分析,以执行从常规分类到分子特征鉴定的各种任务。这些方法将癌症组织学图像提炼成高级特征,用于预测,但理解这些特征的生物学意义仍然具有挑战性。我们提出并验证了一个定制的生成对抗网络 — HistoXGAN — 能够使用常见特征提取器生成的特征向量重建代表性组织学。我们评估了 29 种癌症亚型的 HistoXGAN,并证明重建的图像保留了有关肿瘤分级、组织学亚型和基因表达模式的信息。我们利用 HistoXGAN 来说明可操作突变的深度学习模型的潜在组织学特征,确定模型在预测中对组织学批量效应的依赖性,并展示从放射学成像中准确重建肿瘤组织学以进行“虚拟活检”。