当前位置: X-MOL 学术Sci. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamical control of nanoscale electron density in atomically thin n-type semiconductors via nano-electric pulse generator
Science Advances ( IF 11.7 ) Pub Date : 2024-11-15 , DOI: 10.1126/sciadv.adr0492
Sujeong Kim, Hyeongwoo Lee, Seonhye Eom, Gangseon Ji, Soo Ho Choi, Huitae Joo, Jinhyuk Bae, Ki Kang Kim, Hyeong-Ryeol Park, Kyoung-Duck Park

Controlling electron density in two-dimensional semiconductors is crucial for both comprehensive understanding of fundamental material properties and their technological applications. However, conventional electrostatic doping methods exhibit limitations, particularly in addressing electric field–induced drift and subsequent diffusion of electrons, which restrict nanoscale doping. Here, we present a tip-induced nanospectroscopic electric pulse modulator to dynamically control nanoscale electron density, thereby facilitating precise measurement of nano-optoelectronic behaviors within a MoS 2 monolayer. The tip-induced electric pulse enables nanoscale modulation of electron distribution as a function of electric pulse width. We simultaneously investigate spatially altering photoluminescence quantum yield at the nanoscale region. We model the extent of electron depletion region, confirming a minimum doping region with a radius of ∼265 nanometers for a 30-nanosecond pulse width. Our approach paves the way for engineering local electron density and in situ nano-optical characterization in two-dimensional materials, enabling an in-depth understanding of doping-dependent nano-optoelectronic phenomena.

中文翻译:


通过纳米电脉冲发生器对原子薄 n 型半导体中纳米级电子密度的动力学控制



控制二维半导体中的电子密度对于全面了解基本材料特性及其技术应用至关重要。然而,传统的静电掺杂方法存在局限性,特别是在解决电场诱导漂移和随后的电子扩散方面,这限制了纳米级掺杂。在这里,我们提出了一种针尖诱导的纳米光谱电脉冲调制器,用于动态控制纳米级电子密度,从而促进 MoS 2 单层内纳米光电行为的精确测量。尖端感应电脉冲能够实现电子分布的纳米级调制,作为电脉冲宽度的函数。我们同时研究了纳米级区域空间变化的光致发光量子产率。我们对电子耗尽区的范围进行建模,确认了 30 纳秒脉冲宽度的最小掺杂区半径为 ∼265 纳米。我们的方法为二维材料中的局部电子密度工程和原位纳米光学表征铺平了道路,从而能够深入了解掺杂依赖性纳米光电子现象。
更新日期:2024-11-15
down
wechat
bug