当前位置:
X-MOL 学术
›
Transp. Res. Part B Methodol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Generating online freight delivery demand during COVID-19 using limited data
Transportation Research Part B: Methodological ( IF 5.8 ) Pub Date : 2024-10-30 , DOI: 10.1016/j.trb.2024.103100 Majid Mirzanezhad, Richard Twumasi-Boakye, Tayo Fabusuyi, Andrea Broaddus
Transportation Research Part B: Methodological ( IF 5.8 ) Pub Date : 2024-10-30 , DOI: 10.1016/j.trb.2024.103100 Majid Mirzanezhad, Richard Twumasi-Boakye, Tayo Fabusuyi, Andrea Broaddus
Urban freight data analysis is crucial for informed decision-making, resource allocation, and optimizing routes, leading to efficient and sustainable freight operations in cities. Driven in part by the COVID-19 pandemic, the pace of online purchases for at-home delivery has accelerated significantly. However, responding to this development has been challenging given the lack of public data. The existing data may be infrequent because of survey participant non-responses. This data paucity renders conventional predictive models unreliable.
中文翻译:
在 COVID-19 疫情期间使用有限的数据生成在线货运需求
城市货运数据分析对于做出明智的决策、资源分配和优化路线至关重要,从而在城市中实现高效和可持续的货运运营。部分受 COVID-19 大流行的推动,在线购买送货上门的步伐显着加快。然而,由于缺乏公共数据,应对这一发展一直具有挑战性。由于调查参与者未回答,现有数据可能不常见。这种数据的缺乏使传统的预测模型不可靠。
更新日期:2024-10-30
中文翻译:
在 COVID-19 疫情期间使用有限的数据生成在线货运需求
城市货运数据分析对于做出明智的决策、资源分配和优化路线至关重要,从而在城市中实现高效和可持续的货运运营。部分受 COVID-19 大流行的推动,在线购买送货上门的步伐显着加快。然而,由于缺乏公共数据,应对这一发展一直具有挑战性。由于调查参与者未回答,现有数据可能不常见。这种数据的缺乏使传统的预测模型不可靠。