当前位置:
X-MOL 学术
›
Urban Clim.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mapping CO2 traffic emissions within local climate zones in Helsinki
Urban Climate ( IF 6.0 ) Pub Date : 2024-10-26 , DOI: 10.1016/j.uclim.2024.102171 Omar Al-Jaghbeer, Pak Lun Fung, Ville-Veikko Paunu, Leena Järvi
Urban Climate ( IF 6.0 ) Pub Date : 2024-10-26 , DOI: 10.1016/j.uclim.2024.102171 Omar Al-Jaghbeer, Pak Lun Fung, Ville-Veikko Paunu, Leena Järvi
Road traffic is one of the major emitters of carbon dioxide (CO2 ) to the atmosphere. Besides detailed carbon emission calculations, methods to upscale the emissions are needed, particularly in areas where good-quality data to calculate CO2 emissions are lacking. To support this need, this study aims to quantify traffic-related CO2 emissions within Local Climate Zones (LCZs) in Helsinki, Finland, and build a regression-based look-up table for the CO2 emissions. To build the model, we use CO2 emission data together with the variables, namely building surface area, asphalt surface area, population, traffic light, and road type. The median CO2 emissions from the built LCZs are 1.8 times higher than those from land cover LCZs. The original classification of the LCZ framework is insufficient to describe traffic CO2 emissions. The most critical variables in describing traffic CO2 emissions are road type and asphalt area. We then build a generalized model applicable across LCZs, which can describe on average 55 % of the emissions. Based on the model, we introduce a look-up table for LCZ-specific traffic CO2 emissions. This look-up table offers a practical solution for locations with limited resources to estimate traffic emissions. Crucially, this approach circumvents the need for traffic data, and minimizes computational resource requirements.
中文翻译:
绘制赫尔辛基当地气候区内的 CO2 交通排放图
道路交通是向大气中排放二氧化碳 (CO2) 的主要来源之一。除了详细的碳排放计算外,还需要扩大排放规模的方法,特别是在缺乏高质量数据来计算 CO2 排放量的地区。为了支持这一需求,本研究旨在量化芬兰赫尔辛基局部气候区 (LCZ) 内与交通相关的 CO2 排放,并建立一个基于回归的 CO2 排放查找表。为了构建模型,我们使用 CO2 排放数据以及变量,即建筑物表面积、沥青表面积、人口、交通信号灯和道路类型。已建成的 LCZ 的 CO2 排放量中位数是土地覆盖 LCZ 的 1.8 倍。LCZ 框架的原始分类不足以描述交通 CO2 排放。描述交通 CO2 排放的最关键变量是道路类型和沥青面积。然后,我们建立了一个适用于各个 LCZ 的广义模型,该模型平均可以描述 55% 的排放量。基于该模型,我们引入了一个 LCZ 特定交通 CO2 排放量的查找表。此查找表为资源有限的位置提供了一个实用的解决方案,用于估计交通排放量。至关重要的是,这种方法避免了对流量数据的需求,并最大限度地减少了计算资源需求。
更新日期:2024-10-26
中文翻译:
绘制赫尔辛基当地气候区内的 CO2 交通排放图
道路交通是向大气中排放二氧化碳 (CO2) 的主要来源之一。除了详细的碳排放计算外,还需要扩大排放规模的方法,特别是在缺乏高质量数据来计算 CO2 排放量的地区。为了支持这一需求,本研究旨在量化芬兰赫尔辛基局部气候区 (LCZ) 内与交通相关的 CO2 排放,并建立一个基于回归的 CO2 排放查找表。为了构建模型,我们使用 CO2 排放数据以及变量,即建筑物表面积、沥青表面积、人口、交通信号灯和道路类型。已建成的 LCZ 的 CO2 排放量中位数是土地覆盖 LCZ 的 1.8 倍。LCZ 框架的原始分类不足以描述交通 CO2 排放。描述交通 CO2 排放的最关键变量是道路类型和沥青面积。然后,我们建立了一个适用于各个 LCZ 的广义模型,该模型平均可以描述 55% 的排放量。基于该模型,我们引入了一个 LCZ 特定交通 CO2 排放量的查找表。此查找表为资源有限的位置提供了一个实用的解决方案,用于估计交通排放量。至关重要的是,这种方法避免了对流量数据的需求,并最大限度地减少了计算资源需求。