当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analytical and computer modelling of a thermo-mechanical vapour compression system for space air conditioning in buildings
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-11-12 , DOI: 10.1016/j.enconman.2024.119252
Hussein A. Al Khiro, Rabah Boukhanouf

Air conditioning in buildings is essential for providing indoor thermal comfort, but it imposes a significant electrical power load and carbon footprint, particularly when using traditional vapor compression systems. This study investigates an innovative design and thermodynamic analysis of a cooling system that integrates an ejector device into a basic vapour compression cycle and incorporates a thermally driven second-stage compressor, forming the proposed thermo-mechanical vapor compression cooling system. The second-stage compressor operates at constant volume, utilizing thermal energy from an external heat source, such as a thermal solar collector. A MATLAB® model was developed to evaluate key energy performance indices of the cycle for selected commercially available refrigerants, and the effect of external heat source temperature and condenser temperature on the cooler’s thermodynamic performance was studied in detail. Results showed a marked reduction in mechanical compressor work using refrigerants such as R161, R1270, R1234yf, and R1234zeE. For instance, the mechanical energy consumption was reduced by 30.54 %, and the Coefficient of Performance improved by 43.98 % compared to the basic vapor compression cycle, at a condenser temperature of 65 °C and a superheated refrigerant temperature leaving the thermal storage of 100 °C using R1234yf. These findings indicate that the thermo-mechanical vapour compression cooling system offers a promising solution for reducing energy consumption and carbon emissions in buildings, particularly in hot climates.

中文翻译:


用于建筑物空间空调的热机械蒸汽压缩系统的分析和计算机建模



建筑物中的空调对于提供室内热舒适性至关重要,但它会带来大量的电力负荷和碳足迹,尤其是在使用传统蒸汽压缩系统时。本研究调查了冷却系统的创新设计和热力学分析,该系统将喷射器装置集成到基本的蒸汽压缩循环中,并结合了热驱动的第二级压缩机,形成了拟议的热机械蒸汽压缩冷却系统。第二级压缩机以恒定体积运行,利用来自外部热源(如太阳能热集热器)的热能。开发了一个 MATLAB® 模型来评估选定的市售制冷剂循环的关键能源性能指标,并详细研究了外部热源温度和冷凝器温度对冷却器热力学性能的影响。结果显示,使用 R161、R1270、R1234yf 和 R1234zeE 等制冷剂的机械压缩机工作显著减少。例如,在冷凝器温度为 65 °C 和过热制冷剂温度为 100 °C 的情况下,使用 R1234yf 的蓄热温度为 100 °C,与基本蒸汽压缩循环相比,机械能耗降低了 30.54 %,性能系数提高了 43.98 %。这些发现表明,热机械蒸汽压缩冷却系统为减少建筑物的能源消耗和碳排放提供了一种有前途的解决方案,尤其是在炎热的气候下。
更新日期:2024-11-12
down
wechat
bug