当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cutting-edge biomass gasification technologies for renewable energy generation and achieving net zero emissions
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-11-06 , DOI: 10.1016/j.enconman.2024.119213
Farooq Sher, Saman Hameed, Narcisa Smječanin Omerbegović, Alexander Chupin, Irfan Ul Hai, Bohong Wang, Yew Heng Teoh, Magdalena Joka Yildiz

Biomass gasification is a significant technology for the production of bioenergy. A deeper understanding of biomass gasification is crucial, especially regarding its role in bioenergy carbon capture and storage and its contribution to achieving net-zero emissions. This novel review encompasses gasification processes, novel design technologies, advanced syngas cleaning strategies, scalability challenges, techno-economic analysis, societal and environmental aspects of biomass gasification for achieving net-zero emissions. Biomass gasification typically occurs within temperatures (500 to 1000 °C), pressures (0.98 to 2.94 atm), S/B (0.3–1), residence time (few minutes), moisture content (below 35%) and with or without the presence of a catalyst. It is found that optimizing the gasification key parameters significantly reduces impurities content. Gasifier design affects tar content significantly: updraft gasifiers produce the most tar (about 100 g/Nm3), downdraft gasifiers the least (around 1 g/Nm3) and fluidized-bed gasifiers have intermediate levels (around 10 g/Nm3). Physical-mechanical methods achieve 99% efficiency but reduce energy conversion and generate hazardous waste. Thermal and catalytic cracking methods offer up to 98–100% efficiency, with nickel-based catalysts being highly effective. Biomass gasification has attained a Technology Readiness Level (TRL) of 8–9, demonstrating its feasibility for large-scale implementation. However, it incurs a 15% cost increase and requires additional advancements to address technical and economic challenges. Furthermore, converting syngas into valuable products is vital for achieving negative GHG emissions. Continued research is essential to enhance the overall efficacy of the gasification process. Developing innovative approaches that efficiently valorize all gasification by-products is crucial for enabling widespread adoption in the global market.

中文翻译:


用于可再生能源发电和实现净零排放的尖端生物质气化技术



生物质气化是生产生物能源的重要技术。更深入地了解生物质气化至关重要,尤其是关于它在生物能源碳捕获和储存中的作用及其对实现净零排放的贡献。这项新颖的综述包括气化工艺、新颖的设计技术、先进的合成气净化策略、可扩展性挑战、技术经济分析、生物质气化的社会和环境方面,以实现净零排放。生物质气化通常发生在温度(500 至 1000 °C)、压力(0.98 至 2.94 个大气压)、S/B (0.3-1)、停留时间(几分钟)、水分含量(低于 35%)以及有或没有催化剂的情况下进行。研究发现,优化气化关键参数可显著降低杂质含量。气化炉设计对焦油含量有显著影响:上吸式气化炉产生的焦油最多(约 100 g/Nm3),下吸式气化炉产生的焦油最少(约 1 g/Nm3),流化床气化炉具有中等水平(约 10 g/Nm3)。物理机械方法的效率达到 99%,但会降低能源转换并产生危险废物。热裂化和催化裂化方法可提供高达 98-100% 的效率,镍基催化剂非常有效。生物质气化已达到 8-9 的技术成熟度 (TRL),证明了其大规模实施的可行性。但是,它会导致成本增加 15%,并且需要额外的改进来应对技术和经济挑战。此外,将合成气转化为有价值的产品对于实现负温室气体排放至关重要。持续的研究对于提高气化过程的整体效率至关重要。 开发能够有效利用所有气化副产品的创新方法,对于在全球市场上得到广泛采用至关重要。
更新日期:2024-11-06
down
wechat
bug