当前位置:
X-MOL 学术
›
Energy Convers. Manag.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Comparative analysis of powertrain architectures for fuel cell light commercial vehicles in terms of performance and durability
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-11-04 , DOI: 10.1016/j.enconman.2024.119191 R. Novella, M. Lopez-Juarez, D. González-Domínguez, I. Nidaguila
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-11-04 , DOI: 10.1016/j.enconman.2024.119191 R. Novella, M. Lopez-Juarez, D. González-Domínguez, I. Nidaguila
At the present time, the critical climate situation has raised awareness about the importance of developing carbon-free technologies. In this context, fuel cell systems (FCS) have become one of the key technologies in the pathway to decarbonization. Given that road transport is a major contributor to greenhouse gas (GHG) emissions, this paper focuses on a specific segment of this sector: light commercial vehicles (LCVs). The current market situation shows that LCV manufacturers have not yet decided what is the appropriate powertrain architecture for this kind of vehicle. Thus, the current paper studies a wide range of possible FCS-based propulsive system designs, changing the size of the FCS, electric battery and H2 tank. These propulsive system architectures are analyzed concerning the performance of the vehicle, in terms of consumption and range, and the durability of its FCS. The evaluation of these different designs will be highly valuable for the LCV industry and manufacturers, as it allows to understand the optimal powertrain solution. The study demonstrates that a significant increase in range can be achieved with only a minor penalty in hydrogen consumption. Additionally, the research indicates that it is feasible to employ one of the most durable FCS designs while meeting LCV mission requirements with minimal consumption penalty. In conclusion, this paper provides valuable data to the ongoing research in this field, offering a detailed analysis of the impact of H2 consumption, autonomy, and durability of the FCS across various vehicle architectures under typical LCV driving conditions.
中文翻译:
燃料电池轻型商用车动力总成架构的性能和耐久性比较分析
目前,严峻的气候形势提高了人们对开发无碳技术重要性的认识。在此背景下,燃料电池系统 (FCS) 已成为实现脱碳的关键技术之一。鉴于道路运输是温室气体 (GHG) 排放的主要贡献者,本文重点介绍该行业的一个特定部分:轻型商用车 (LCV)。目前的市场情况表明,LCV 制造商尚未决定适合此类车辆的动力总成架构。因此,本文研究了各种可能的基于 FCS 的推进系统设计,改变了 FCS、电池和 H2 油箱的大小。这些推进系统架构根据车辆的性能、油耗和续航里程以及 FCS 的耐用性进行分析。对这些不同设计的评估对 LCV 行业和制造商来说将非常有价值,因为它可以了解最佳的动力总成解决方案。该研究表明,只需对氢气消耗进行轻微的损失,就可以显着增加续航里程。此外,研究表明,采用最耐用的 FCS 设计之一,同时满足 LCV 任务要求,同时以最小的消耗损失是可行的。总之,本文为该领域正在进行的研究提供了有价值的数据,详细分析了在典型 LCV 驾驶条件下 FCS 在各种车辆架构中的 H2 消耗、自主性和耐用性的影响。
更新日期:2024-11-04
中文翻译:
燃料电池轻型商用车动力总成架构的性能和耐久性比较分析
目前,严峻的气候形势提高了人们对开发无碳技术重要性的认识。在此背景下,燃料电池系统 (FCS) 已成为实现脱碳的关键技术之一。鉴于道路运输是温室气体 (GHG) 排放的主要贡献者,本文重点介绍该行业的一个特定部分:轻型商用车 (LCV)。目前的市场情况表明,LCV 制造商尚未决定适合此类车辆的动力总成架构。因此,本文研究了各种可能的基于 FCS 的推进系统设计,改变了 FCS、电池和 H2 油箱的大小。这些推进系统架构根据车辆的性能、油耗和续航里程以及 FCS 的耐用性进行分析。对这些不同设计的评估对 LCV 行业和制造商来说将非常有价值,因为它可以了解最佳的动力总成解决方案。该研究表明,只需对氢气消耗进行轻微的损失,就可以显着增加续航里程。此外,研究表明,采用最耐用的 FCS 设计之一,同时满足 LCV 任务要求,同时以最小的消耗损失是可行的。总之,本文为该领域正在进行的研究提供了有价值的数据,详细分析了在典型 LCV 驾驶条件下 FCS 在各种车辆架构中的 H2 消耗、自主性和耐用性的影响。