当前位置:
X-MOL 学术
›
Energy Convers. Manag.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Energy, exergy, environmental and economic analysis of a solar-assisted heat pump-driven enclosed drying system with liquid desiccant dehumidification
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-11-01 , DOI: 10.1016/j.enconman.2024.119201 Wei Su, Jiru Li, Xu Jin, Zhongyan Liu, Di Yang, Hao Zhang, Xiaosong Zhang
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-11-01 , DOI: 10.1016/j.enconman.2024.119201 Wei Su, Jiru Li, Xu Jin, Zhongyan Liu, Di Yang, Hao Zhang, Xiaosong Zhang
Drying process, as one of the most energy-intensive processes, plays a significant role in a variety of agricultural, residential and industrial applications. Existing solar or heat pump drying systems have not been well promoted and applied due to their instability or inefficiency. In order to achieve a stable and efficient drying process, a novel solar-assisted heat pump-driven enclosed drying system with liquid desiccant dehumidification is proposed in this study, in which total waste heat recovery structure and operation modes transition control strategy are carefully designed for better system performance. A comprehensive analysis incorporating energy, exergy, economic, and environmental assessments are performed based on established mathematical models. Results demonstrate that the proposed system achieves a maximum coefficient of performance of 7.84, an energy utilization ratio of 11.09, and a specific moisture extraction rate of 14.87 kg/kW·h when solar radiation exceeds 640 W/m2 . Exergy analysis further reveals that over 80 % of exergy loss occurs in the solar collector, with the system attaining an exergy efficiency of 50.1 %. When annual solar radiation values reach 1580 kW·h/m2 and 1300 kW·h/m2 , the system reduces electricity consumption by 36.64 % and 29.82 %, respectively, compared to traditional cascade enclosed heat pump drying systems, achieving a payback period of approximately 5 to 18 months. Additionally, the novel system cuts annual CO2 emissions by 27.65 % compared to conventional drying methods, highlighting its significant environmental benefits.
中文翻译:
太阳能辅助热泵驱动的液体干燥剂除湿密闭干燥系统的能源、用能、环境和经济分析
干燥过程作为最耗能的工艺之一,在各种农业、住宅和工业应用中发挥着重要作用。现有的太阳能或热泵干燥系统由于不稳定或效率低下而没有得到很好的推广和应用。为了实现稳定高效的干燥过程,本研究提出了一种新型的太阳能辅助热泵驱动的液体干燥剂除湿封闭干燥系统,其中精心设计了总余热回收结构和运行模式过渡控制策略,以获得更好的系统性能。根据已建立的数学模型进行综合分析,包括能源、用能、经济和环境评估。结果表明,当太阳辐射量超过 640 W/m2 时,所提系统实现了最大性能系数 7.84,能源利用率为 11.09,比水分提取率为 14.87 kg/kW·h。用能分析进一步表明,超过 80% 的用能损耗发生在太阳能集热器中,系统达到 50.1% 的用能效率。当年太阳辐射值达到 1580 kW·h/m2 和 1300 kW·h/m2 时,与传统的复叠式封闭式热泵干燥系统相比,该系统分别减少了 36.64% 和 29.82% 的电力消耗,实现了大约 5 至 18 个月的投资回收期。此外,与传统干燥方法相比,该新型系统每年可减少 27.65% 的 CO2 排放量,凸显了其显著的环境效益。
更新日期:2024-11-01
中文翻译:
太阳能辅助热泵驱动的液体干燥剂除湿密闭干燥系统的能源、用能、环境和经济分析
干燥过程作为最耗能的工艺之一,在各种农业、住宅和工业应用中发挥着重要作用。现有的太阳能或热泵干燥系统由于不稳定或效率低下而没有得到很好的推广和应用。为了实现稳定高效的干燥过程,本研究提出了一种新型的太阳能辅助热泵驱动的液体干燥剂除湿封闭干燥系统,其中精心设计了总余热回收结构和运行模式过渡控制策略,以获得更好的系统性能。根据已建立的数学模型进行综合分析,包括能源、用能、经济和环境评估。结果表明,当太阳辐射量超过 640 W/m2 时,所提系统实现了最大性能系数 7.84,能源利用率为 11.09,比水分提取率为 14.87 kg/kW·h。用能分析进一步表明,超过 80% 的用能损耗发生在太阳能集热器中,系统达到 50.1% 的用能效率。当年太阳辐射值达到 1580 kW·h/m2 和 1300 kW·h/m2 时,与传统的复叠式封闭式热泵干燥系统相比,该系统分别减少了 36.64% 和 29.82% 的电力消耗,实现了大约 5 至 18 个月的投资回收期。此外,与传统干燥方法相比,该新型系统每年可减少 27.65% 的 CO2 排放量,凸显了其显著的环境效益。