当前位置:
X-MOL 学术
›
Tunn. Undergr. Space Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Longitudinal and circumferential bending moment responses of dislocated concrete pipes rehabilitated with CIPP liners under traffic loads
Tunnelling and Underground Space Technology ( IF 6.7 ) Pub Date : 2024-11-12 , DOI: 10.1016/j.tust.2024.106222 Hongyuan Fang, Jiayang Sun, Bin Li, Xueming Du, Niannian Wang, Danyang Di, Kejie Zhai
Tunnelling and Underground Space Technology ( IF 6.7 ) Pub Date : 2024-11-12 , DOI: 10.1016/j.tust.2024.106222 Hongyuan Fang, Jiayang Sun, Bin Li, Xueming Du, Niannian Wang, Danyang Di, Kejie Zhai
The dislocation of concrete pipe joints, caused by factors such as uneven settlement and surface loads, can lead to structural deterioration and even failure of the pipeline. Addressing how to repair such pipelines to enhance their disaster resistance and resilience is a critical issue. This study focuses on Bell & Spigot dislocated concrete pipes, conducting a full-scale model box experiment on the bending moment responses of dislocated pipes before and after Cured-In-Place Pipe (CIPP) rehabilitation under various burial depths. Additionally, a 3D finite element model was constructed to analyze the interaction between the dislocated concrete pipes and the surrounding soil, considering burial depth, load position, dislocated forms, flexural modulus of CIPP liner, and the liner thickness. A comparison of finite element (FE) model predictions and experimental measurements was made for CIPP liners at different burial depths, validating the reliability of the simulation results. Building on this, the study explores the influence of various factors on the longitudinal and circumferential bending moment responses of the dislocated concrete pipes before and after CIPP rehabilitation. Key findings indicate that at a burial depth of 0.5 m, the pipe experiences a deformation tendency with tension on the upper side and compression on the lower side. At burial depths of 1.0 m and 1.5 m, the pipe exhibits a deformation tendency with compression on the upper side and tension on the lower side. When the traffic load is positioned directly above the dislocated joint, the peak values of the longitudinal bending moments for the left pipe (P2) and right pipe (P3) adjacent to the dislocated joint increase by approximately 64 % and 137 %, and 74 % and 234 %, respectively, compared to when the traffic load is applied at the spigot and bell. The longitudinal bending moment of the pipe is significantly affected by both burial depth and dislocated forms, while the circumferential bending moment is primarily influenced by burial depth. At a burial depth of 0.5 m, the repair rates of the circumferential bending moments for the spigot and bell are higher than those at a depth of 1.0 m. When the dislocated form is BL, the circumferential bending moment repair rate for the spigot is the highest, approximately 0.52. When the flexural modulus of CIPP increases from 7000 MPa to 9000 MPa, the peak longitudinal bending moments in the midsections of P2 and P3 pipes decrease by about 15 %, while the longitudinal bending moment at the spigot of P2 pipe increases by approximately 22 %. Additionally, when the CIPP liner thickness is increased from 6.0 mm to 18 mm, the peak longitudinal bending moments in the midsections of P2 and P3 pipes decrease by 48 %, and the peak circumferential moments at the spigot and bell decrease by approximately 46 % and 17 %, respectively.
中文翻译:
在交通荷载作用下,用 CIPP 衬垫修复错位混凝土管道的纵向和周向弯矩响应
由不均匀沉降和表面荷载等因素引起的混凝土管接头错位,可导致管道结构恶化甚至失效。解决如何修复此类管道以增强其抗灾能力和弹性是一个关键问题。这项研究的重点是Bell & Spigot错位混凝土管,对错位管道在各种埋深下修复前后错位管道的弯矩响应进行了全尺寸模型箱实验。此外,构建了一个 3D 有限元模型来分析错位混凝土管与周围土壤之间的相互作用,考虑埋深、负载位置、错位形式、CIPP 衬垫的弯曲模量和衬砌厚度。对不同埋深的 CIPP 衬垫进行了有限元 (FE) 模型预测和实验测量的比较,验证了仿真结果的可靠性。在此基础上,该研究探讨了各种因素对 CIPP 修复前后错位混凝土管的纵向和周向弯矩响应的影响。主要结果表明,在 0.5 m 的埋深处,管道出现变形趋势,上侧为拉伸,下侧为压缩。在 1.0 m 和 1.5 m 的埋深处,管道表现出上侧压缩、下侧拉伸的变形趋势。 当交通荷载直接位于脱臼接头的上方时,与在插口和钟处施加交通荷载时相比,与脱臼接头相邻的左管 (P2) 和右管 (P3) 的纵向弯矩峰值分别增加了约 64 % 和 137 %,以及 74 % 和 234 %。管道的纵向弯矩受埋深和位错形式的影响很大,而圆周弯矩主要受埋深的影响。在 0.5 m 的埋深处,插口和钟形弯矩的修复率高于 1.0 m 深度的圆周弯矩修复率。当位错形式为 BL 时,套管的圆周弯矩修复率最高,约为 0.52。当 CIPP 的弯曲模量从 7000 MPa 增加到 9000 MPa 时,P2 和 P3 管中段的峰值纵向弯矩减小了约 15 %,而 P2 管套管处的纵向弯矩增加了约 22 %。此外,当 CIPP 衬垫厚度从 6.0 mm 增加到 18 mm 时,P2 和 P3 管中段的峰值纵向弯矩减少了 48 %,插口和钟罩处的峰值圆周弯矩分别减少了约 46 % 和 17 %。
更新日期:2024-11-12
中文翻译:
在交通荷载作用下,用 CIPP 衬垫修复错位混凝土管道的纵向和周向弯矩响应
由不均匀沉降和表面荷载等因素引起的混凝土管接头错位,可导致管道结构恶化甚至失效。解决如何修复此类管道以增强其抗灾能力和弹性是一个关键问题。这项研究的重点是Bell & Spigot错位混凝土管,对错位管道在各种埋深下修复前后错位管道的弯矩响应进行了全尺寸模型箱实验。此外,构建了一个 3D 有限元模型来分析错位混凝土管与周围土壤之间的相互作用,考虑埋深、负载位置、错位形式、CIPP 衬垫的弯曲模量和衬砌厚度。对不同埋深的 CIPP 衬垫进行了有限元 (FE) 模型预测和实验测量的比较,验证了仿真结果的可靠性。在此基础上,该研究探讨了各种因素对 CIPP 修复前后错位混凝土管的纵向和周向弯矩响应的影响。主要结果表明,在 0.5 m 的埋深处,管道出现变形趋势,上侧为拉伸,下侧为压缩。在 1.0 m 和 1.5 m 的埋深处,管道表现出上侧压缩、下侧拉伸的变形趋势。 当交通荷载直接位于脱臼接头的上方时,与在插口和钟处施加交通荷载时相比,与脱臼接头相邻的左管 (P2) 和右管 (P3) 的纵向弯矩峰值分别增加了约 64 % 和 137 %,以及 74 % 和 234 %。管道的纵向弯矩受埋深和位错形式的影响很大,而圆周弯矩主要受埋深的影响。在 0.5 m 的埋深处,插口和钟形弯矩的修复率高于 1.0 m 深度的圆周弯矩修复率。当位错形式为 BL 时,套管的圆周弯矩修复率最高,约为 0.52。当 CIPP 的弯曲模量从 7000 MPa 增加到 9000 MPa 时,P2 和 P3 管中段的峰值纵向弯矩减小了约 15 %,而 P2 管套管处的纵向弯矩增加了约 22 %。此外,当 CIPP 衬垫厚度从 6.0 mm 增加到 18 mm 时,P2 和 P3 管中段的峰值纵向弯矩减少了 48 %,插口和钟罩处的峰值圆周弯矩分别减少了约 46 % 和 17 %。