当前位置:
X-MOL 学术
›
Tunn. Undergr. Space Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Investigation into the collapse height of TBM jamming machinery induced by fault fracture zones and the verification of applicability
Tunnelling and Underground Space Technology ( IF 6.7 ) Pub Date : 2024-11-08 , DOI: 10.1016/j.tust.2024.106196 Qian Zhang, Yan Ma, Yanliang Du, Lijie Du, Minyuan Wang, Sunhao Zhang, Yaoqi Nie
Tunnelling and Underground Space Technology ( IF 6.7 ) Pub Date : 2024-11-08 , DOI: 10.1016/j.tust.2024.106196 Qian Zhang, Yan Ma, Yanliang Du, Lijie Du, Minyuan Wang, Sunhao Zhang, Yaoqi Nie
The large-scale collapse resulting from TBM tunneling within fault fracture zones leads to cutterhead and shield jamming. Given the significant gravitational force of the rock mass and ground stress, the collapse height serves as a key identification factor. Starting with the jamming scenarios of the cutterhead and shield, a mechanical expression for the theoretical model of collapse height is formulated. By incorporating numerical model findings on the extent of rock mass displacement deformation due to excavation disturbance, data from the Xianglushan Tunnel are used to verify the alignment between the theoretical model and simulation results. he findings indicate that the theoretical model-derived collapse height threshold for cutterhead jamming is 7.21 m above the TBM, showing a 90 % agreement with the numerical simulation result of 7.98 m and the maximum collapse cavity height measured in the field (8.0 m). The collapse height of 20.46 m for the shield jamming case corresponds to the open TBM scenario, where shield jamming is less likely. Additionally, the theoretically predicted average collapse heights of 5.31 m, 6.57 m, and 7.51 m under other contact scenarios closely correlate with the simulated displacement deformation zone heights of 5.03 m, 6.92 m, and 7.60 m, demonstrating a 94 % concordance. This theoretical model, showing strong applicability, is further extended to account for varying shield lengths (Ld) and contact range scenarios. For a shield length of 6 m, the predicted threshold value of collapse height for shield jamming aligns with both the theoretical predictions and the simulated rock mass displacement range. This research introduces predictive methodologies for addressing collapse-induced jamming incidents within fault fracture zones.
中文翻译:
断层断裂带诱发的TBM干扰机械坍塌高度调查及适用性验证
TBM 在断层断裂带内掘进导致的大规模坍塌导致刀盘和盾构堵塞。鉴于岩体和地应力的巨大重力,坍塌高度是一个关键的识别因素。从刀盘和盾构的干扰场景入手,建立了塌陷高度理论模型的力学表达式。通过结合关于开挖扰动引起的岩体位移变形程度的数值模型结果,使用翔鹭山隧道的数据来验证理论模型与模拟结果之间的一致性。他的研究结果表明,理论模型推导的刀盘卡住的塌陷高度阈值为TBM以上7.21 m,与数值模拟结果7.98 m和现场测量的最大塌陷腔高度(8.0 m)的吻合度为90%。盾构干扰情况下 20.46 m 的坍塌高度对应于开放式 TBM 情景,在这种情况下,盾构干扰的可能性较小。此外,在其他接触情景下,理论预测的平均坍塌高度为 5.31 m、6.57 m 和 7.51 m,与模拟的位移变形区高度 5.03 m、6.92 m 和 7.60 m 密切相关,显示出 94% 的一致性。该理论模型具有很强的适用性,并进一步扩展以考虑不同的屏蔽层长度 (Ld) 和接触范围场景。当盾构长度为 6 m 时,盾构干扰的塌陷高度预测阈值与理论预测和模拟岩体位移范围一致。本研究介绍了解决断层断裂带内坍塌诱发的干扰事件的预测方法。
更新日期:2024-11-08
中文翻译:
断层断裂带诱发的TBM干扰机械坍塌高度调查及适用性验证
TBM 在断层断裂带内掘进导致的大规模坍塌导致刀盘和盾构堵塞。鉴于岩体和地应力的巨大重力,坍塌高度是一个关键的识别因素。从刀盘和盾构的干扰场景入手,建立了塌陷高度理论模型的力学表达式。通过结合关于开挖扰动引起的岩体位移变形程度的数值模型结果,使用翔鹭山隧道的数据来验证理论模型与模拟结果之间的一致性。他的研究结果表明,理论模型推导的刀盘卡住的塌陷高度阈值为TBM以上7.21 m,与数值模拟结果7.98 m和现场测量的最大塌陷腔高度(8.0 m)的吻合度为90%。盾构干扰情况下 20.46 m 的坍塌高度对应于开放式 TBM 情景,在这种情况下,盾构干扰的可能性较小。此外,在其他接触情景下,理论预测的平均坍塌高度为 5.31 m、6.57 m 和 7.51 m,与模拟的位移变形区高度 5.03 m、6.92 m 和 7.60 m 密切相关,显示出 94% 的一致性。该理论模型具有很强的适用性,并进一步扩展以考虑不同的屏蔽层长度 (Ld) 和接触范围场景。当盾构长度为 6 m 时,盾构干扰的塌陷高度预测阈值与理论预测和模拟岩体位移范围一致。本研究介绍了解决断层断裂带内坍塌诱发的干扰事件的预测方法。