当前位置:
X-MOL 学术
›
Tunn. Undergr. Space Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Stabilisation time analysis method for deep tunnels considering rheological effects and lining influence
Tunnelling and Underground Space Technology ( IF 6.7 ) Pub Date : 2024-11-08 , DOI: 10.1016/j.tust.2024.106170 Xu Chen, Chuan He, Guowen Xu, Bo Wang, Gaoyu Ma, Jiamin Du
Tunnelling and Underground Space Technology ( IF 6.7 ) Pub Date : 2024-11-08 , DOI: 10.1016/j.tust.2024.106170 Xu Chen, Chuan He, Guowen Xu, Bo Wang, Gaoyu Ma, Jiamin Du
In tunnel design, the stand-up time of the surrounding rock and the stabilization time of the rock-structure after support are crucial parameters. These parameters affect excavation methods, excavation cycles, rock reinforcement strategies, and the timing of support installation. Currently, evaluations are largely empirical, based on surrounding rock classification, making it challenging to ascertain the long-term stability of the rock-structure. Utilizing creep damage model theory, we derived the viscoelastic-plastic response of surrounding rock under creep. A method for calculating tunnel support time under various geological conditions was proposed, combining longitudinal deformation curves. The stabilization time of surrounding rock-primary support under different conditions was derived from tunnel support characteristic curves. Key findings include: ① The stand-up time of unsupported surrounding rock decreases with increased tunnel depth, increases with higher GSI (Geological Strength Index), and extends with greater maximum allowable displacement. ② The stabilization time for supported surrounding rock-structure increases as support distance decreases, support time decreases, support stiffness increases, and reserved deformation increases. The sensitivity order of support parameters impacting stabilization time is primary lining support time > safe distance from second lining to face > primary lining stiffness. ③ Analysis of the Leye Tunnel DK504 + 050 section confirmed this method reliability, providing reliable initial data for future section predictions. This study enhances tunnel engineering theory and ensures tunnel construction safety and cost-effectiveness.
中文翻译:
考虑流变效应和衬砌影响的深部隧道稳定时间分析方法
在隧道设计中,围岩的站立时间和支护后岩石结构的稳定时间是关键参数。这些参数会影响开挖方法、开挖周期、岩石加固策略和支座安装的时间。目前,评估主要是基于围岩分类的经验,这使得确定岩石结构的长期稳定性具有挑战性。利用蠕变损伤模型理论,我们推导了围岩在蠕变作用下的粘弹塑性响应。提出了一种结合纵向变形曲线计算不同地质条件下隧道支护时间的方法。根据隧道支护特性曲线推导了不同条件下围岩-原生支护的稳定时间。主要发现包括:(1) 无支承围岩的站立时间随着隧道深度的增加而缩短,随着 GSI(地质强度指数)的提高而增加,并随着最大允许位移的增加而延长。(2) 支护围岩结构的稳定时间随着支护距离的减小、支护时间的缩短、支护刚度的增加和保留变形的增加而增加。影响稳定时间的支座参数的敏感顺序是主衬砌支护时间 > 从第二衬砌到面 > 主衬砌刚度的安全距离。(3) 对 Leye 隧道 DK504 + 050 断面的分析证实了该方法的可靠性,为未来的断面预测提供了可靠的初始数据。本研究加强了隧道工程理论,并确保了隧道施工的安全性和成本效益。
更新日期:2024-11-08
中文翻译:
考虑流变效应和衬砌影响的深部隧道稳定时间分析方法
在隧道设计中,围岩的站立时间和支护后岩石结构的稳定时间是关键参数。这些参数会影响开挖方法、开挖周期、岩石加固策略和支座安装的时间。目前,评估主要是基于围岩分类的经验,这使得确定岩石结构的长期稳定性具有挑战性。利用蠕变损伤模型理论,我们推导了围岩在蠕变作用下的粘弹塑性响应。提出了一种结合纵向变形曲线计算不同地质条件下隧道支护时间的方法。根据隧道支护特性曲线推导了不同条件下围岩-原生支护的稳定时间。主要发现包括:(1) 无支承围岩的站立时间随着隧道深度的增加而缩短,随着 GSI(地质强度指数)的提高而增加,并随着最大允许位移的增加而延长。(2) 支护围岩结构的稳定时间随着支护距离的减小、支护时间的缩短、支护刚度的增加和保留变形的增加而增加。影响稳定时间的支座参数的敏感顺序是主衬砌支护时间 > 从第二衬砌到面 > 主衬砌刚度的安全距离。(3) 对 Leye 隧道 DK504 + 050 断面的分析证实了该方法的可靠性,为未来的断面预测提供了可靠的初始数据。本研究加强了隧道工程理论,并确保了隧道施工的安全性和成本效益。