当前位置:
X-MOL 学术
›
Tunn. Undergr. Space Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Research and application of dust removal performance optimization of exhaust ventilation system in fully-mechanized excavation rock tunnel
Tunnelling and Underground Space Technology ( IF 6.7 ) Pub Date : 2024-10-29 , DOI: 10.1016/j.tust.2024.106160 Shihang Li, Yujie Huang, Guanhua Qiu, Shuda Hu, Hao Jin, Jiayi Li, Gang Zhou, Bingyou Jiang, Zhenyu Wu
Tunnelling and Underground Space Technology ( IF 6.7 ) Pub Date : 2024-10-29 , DOI: 10.1016/j.tust.2024.106160 Shihang Li, Yujie Huang, Guanhua Qiu, Shuda Hu, Hao Jin, Jiayi Li, Gang Zhou, Bingyou Jiang, Zhenyu Wu
In coal mine tunnels, geotechnical engineering tunnels, and other underground semi-enclosed workspaces, tunneling operations generate significant dust. Most current dust control technologies rely on forced ventilation system or long-pressure and short-extraction system, which often lead to airborne dust spreading towards the tunnel’s rear, resulting in severe dust pollution. To address this issue, numerical simulation employing the Euler-Lagrange method was used to investigate the impact of the exhaust duct inlet position, ventilation air volume, and suction hood structure on the dust removal efficiency of exhaust ventilation technology. The dust distribution law of the tunnel workface under the condition of exhaust ventilation was revealed. The results show that the exhaust ventilation effectively manages dust at the forefront of the tunnel, primarily concentrating at ground level and near the exhaust duct’s sides. Optimal conditions include maintaining the distance between the exhaust duct inlet and the workface (L) within 4 m for improved visibility and control over dust concentrations in the breathing zone. Increasing air volume (Q) to 500 m3/min enhances lateral dust diffusion control, while adopting a round table-shaped suction hood further reduces dust concentration within the tunnel. Field tests implementing the optimized exhaust ventilation system significantly reduces dust levels. Specifically, at the driver’s position, total dust and respiratory dust concentrations decreased from 956.53 mg/m3 and 325.46 mg/m3 to 3.78 mg/m3 and 1.81 mg/m3, achieving reduction efficiencies of 99.60 % and 99.44 % respectively. Similarly, at a distance of 10 m from the workface, total dust and respiratory dust concentrations decreased from 621.11 mg/m3 and 230.43 mg/m3 to 2.43 mg/m3 and 1.65 mg/m3, with reduction efficiencies reaching 99.60 % and 99.28 % respectively.
中文翻译:
综采开挖岩石隧道排风系统除尘性能优化研究与应用
在煤矿隧道、岩土工程隧道和其他地下半封闭工作空间中,隧道开挖作业会产生大量粉尘。目前的扬尘控制技术大多依赖于强制通风系统或长压短排风系统,这往往会导致空气中的粉尘向隧道后部扩散,造成严重的扬尘污染。针对这一问题,采用 Euler-Lagrange 方法进行数值模拟,研究了排气管入口位置、通风风量和吸风罩结构对排气通风技术除尘效率的影响。揭示了排风通风条件下隧道工作面的粉尘分布规律。结果表明,排风有效地管理了隧道前部的灰尘,主要集中在地面和排气管道侧面附近。最佳条件包括将排气管入口和工作面 (L) 之间的距离保持在 4 m 以内,以提高能见度并控制呼吸区的粉尘浓度。将风量 (Q) 增加到 500 m3/min 增强了对侧面粉尘扩散的控制,同时采用圆桌形吸风罩进一步降低了隧道内的粉尘浓度。实施优化的排气通风系统的现场测试可显著降低粉尘水平。具体而言,在驾驶员位置,总粉尘和呼吸粉尘浓度从 956.53 mg/m3 和 325.46 mg/m3 下降到 3.78 mg/m3 和 1.81 mg/m3,分别实现了 99.60% 和 99.44% 的降低效率。同样,在距离工作面 10 m 处,总粉尘和呼吸粉尘浓度从 621.11 mg/m3 和 230.43 mg/m3 下降到 2。43 mg/m3 和 1.65 mg/m3,还原效率分别达到 99.60 % 和 99.28 %。
更新日期:2024-10-29
中文翻译:
综采开挖岩石隧道排风系统除尘性能优化研究与应用
在煤矿隧道、岩土工程隧道和其他地下半封闭工作空间中,隧道开挖作业会产生大量粉尘。目前的扬尘控制技术大多依赖于强制通风系统或长压短排风系统,这往往会导致空气中的粉尘向隧道后部扩散,造成严重的扬尘污染。针对这一问题,采用 Euler-Lagrange 方法进行数值模拟,研究了排气管入口位置、通风风量和吸风罩结构对排气通风技术除尘效率的影响。揭示了排风通风条件下隧道工作面的粉尘分布规律。结果表明,排风有效地管理了隧道前部的灰尘,主要集中在地面和排气管道侧面附近。最佳条件包括将排气管入口和工作面 (L) 之间的距离保持在 4 m 以内,以提高能见度并控制呼吸区的粉尘浓度。将风量 (Q) 增加到 500 m3/min 增强了对侧面粉尘扩散的控制,同时采用圆桌形吸风罩进一步降低了隧道内的粉尘浓度。实施优化的排气通风系统的现场测试可显著降低粉尘水平。具体而言,在驾驶员位置,总粉尘和呼吸粉尘浓度从 956.53 mg/m3 和 325.46 mg/m3 下降到 3.78 mg/m3 和 1.81 mg/m3,分别实现了 99.60% 和 99.44% 的降低效率。同样,在距离工作面 10 m 处,总粉尘和呼吸粉尘浓度从 621.11 mg/m3 和 230.43 mg/m3 下降到 2。43 mg/m3 和 1.65 mg/m3,还原效率分别达到 99.60 % 和 99.28 %。