当前位置: X-MOL 学术Automatica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Adaptive model-free disturbance rejection for continuum robots
Automatica ( IF 4.8 ) Pub Date : 2024-10-01 , DOI: 10.1016/j.automatica.2024.111949
Cemal Tugrul Yilmaz, Connor Watson, Tania K. Morimoto, Miroslav Krstic

This paper presents two model-free control strategies for the rejection of unknown disturbances in continuum robots. The strategies utilize a neural network-based approximation technique to estimate the uncertain Jacobian matrix using position measurements. The first strategy is designed for periodic disturbances and employs an adaptive model-free controller in conjunction with an adaptive disturbance observer. The second strategy is designed for robustness against arbitrary disturbances and employs time-varying input and update law gains that grow monotonically, resulting in the achievement of asymptotic, exponential, and prescribed-time reference trajectory tracking. The notion of fixed-time stabilization in prescribed time is particularly noteworthy, as it allows for the predefinition of a terminal time, independent of initial conditions and system parameters. A formal stability analysis is presented for each strategy, and the strategies are both tested experimentally with a concentric tube robot subject to unknown disturbances.

中文翻译:


连续机器人的自适应无模型干扰抑制



本文提出了两种无模型的控制策略,用于抑制连续体机器人中的未知干扰。这些策略利用基于神经网络的近似技术,通过位置测量来估计不确定的雅可比矩阵。第一种策略专为周期性干扰而设计,并结合使用自适应无模型控制器和自适应干扰观测器。第二种策略旨在实现对任意干扰的鲁棒性,并采用单调增长的时变输入和更新定律增益,从而实现渐近、指数和规定时间参考轨迹跟踪。在规定时间内固定时间的概念特别值得注意,因为它允许独立于初始条件和系统参数预定义终端时间。为每种策略提出了正式的稳定性分析,并且这些策略都使用同心管机器人对未知干扰进行了实验测试。
更新日期:2024-10-01
down
wechat
bug