当前位置:
X-MOL 学术
›
Autom. Constr.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Robust localization of shear connectors in accelerated bridge construction with neural radiance field
Automation in Construction ( IF 9.6 ) Pub Date : 2024-10-24 , DOI: 10.1016/j.autcon.2024.105843 Gyumin Lee, Ali Turab Asad, Khurram Shabbir, Sung-Han Sim, Junhwa Lee
Automation in Construction ( IF 9.6 ) Pub Date : 2024-10-24 , DOI: 10.1016/j.autcon.2024.105843 Gyumin Lee, Ali Turab Asad, Khurram Shabbir, Sung-Han Sim, Junhwa Lee
Accelerated bridge construction (ABC) demands precise alignment of prefabricated members to prevent assembly failure. Conventional methods struggle to localize shear connectors from point cloud data (PCD) generated by structure-from-motion due to its sparsity. This paper introduces a robust method for shear connector localization using PCD generated by a neural radiance field and a three-step narrowing-down algorithm. The PCD exhibits densely populated points for small connectors, allowing the algorithm to pinpoint their locations accurately. The method successfully identified all 72 shear connectors in a mock-up prefabricated girder, with an average error of 10 mm, demonstrating its potential for assessing constructability in ABC projects. Future research may integrate deep learning-based segmentation techniques to enhance efficiency and adaptability in complex geometries and non-standard bridge designs.
中文翻译:
具有神经辐射场的加速桥梁建设中剪切连接器的稳健定位
加速桥梁施工 (ABC) 要求预制构件精确对齐,以防止装配失败。由于结构的稀疏性,传统方法很难从运动结构生成的点云数据 (PCD) 中定位剪切连接器。本文介绍了一种使用神经辐射场生成的 PCD 和三步缩小算法进行剪切连接器定位的稳健方法。PCD 为小型连接器提供了密集的点,使算法能够准确地确定它们的位置。该方法成功识别了模型预制梁中的所有 72 个抗剪连接件,平均误差为 10 mm,展示了其在 ABC 项目中评估可施工性的潜力。未来的研究可能会整合基于深度学习的分割技术,以提高复杂几何形状和非标准桥梁设计的效率和适应性。
更新日期:2024-10-24
中文翻译:
具有神经辐射场的加速桥梁建设中剪切连接器的稳健定位
加速桥梁施工 (ABC) 要求预制构件精确对齐,以防止装配失败。由于结构的稀疏性,传统方法很难从运动结构生成的点云数据 (PCD) 中定位剪切连接器。本文介绍了一种使用神经辐射场生成的 PCD 和三步缩小算法进行剪切连接器定位的稳健方法。PCD 为小型连接器提供了密集的点,使算法能够准确地确定它们的位置。该方法成功识别了模型预制梁中的所有 72 个抗剪连接件,平均误差为 10 mm,展示了其在 ABC 项目中评估可施工性的潜力。未来的研究可能会整合基于深度学习的分割技术,以提高复杂几何形状和非标准桥梁设计的效率和适应性。