当前位置:
X-MOL 学术
›
Autom. Constr.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Weakly supervised 3D point cloud semantic segmentation for architectural heritage using teacher-guided consistency and contrast learning
Automation in Construction ( IF 9.6 ) Pub Date : 2024-10-16 , DOI: 10.1016/j.autcon.2024.105831 Shuowen Huang, Qingwu Hu, Mingyao Ai, Pengcheng Zhao, Jian Li, Hao Cui, Shaohua Wang
Automation in Construction ( IF 9.6 ) Pub Date : 2024-10-16 , DOI: 10.1016/j.autcon.2024.105831 Shuowen Huang, Qingwu Hu, Mingyao Ai, Pengcheng Zhao, Jian Li, Hao Cui, Shaohua Wang
Point cloud semantic segmentation is significant for managing and protecting architectural heritage. Currently, fully supervised methods require a large amount of annotated data, while weakly supervised methods are difficult to transfer directly to architectural heritage. This paper proposes an end-to-end teacher-guided consistency and contrastive learning weakly supervised (TCCWS) framework for architectural heritage point cloud semantic segmentation, which can fully utilize limited labeled points to train network. Specifically, a teacher-student framework is designed to generate pseudo labels and a pseudo label dividing module is proposed to distinguish reliable and ambiguous point sets. Based on it, a consistency and contrastive learning strategy is designed to fully utilize supervision signals to learn the features of point clouds. The framework is tested on the ArCH dataset and self-collected point cloud, which demonstrates that the proposed method can achieve effective semantic segmentation of architectural heritage using only 0.1 % of annotated points.
中文翻译:
使用教师指导的一致性和对比学习对建筑遗产进行弱监督 3D 点云语义分割
点云语义分割对于管理和保护建筑遗产非常重要。目前,完全监督的方法需要大量的注释数据,而弱监督方法很难直接转移到建筑遗产中。本文提出了一种端到端教师指导的一致性和对比学习弱监督 (TCCWS) 框架,用于建筑遗产点云语义分割,该框架可以充分利用有限的标记点来训练网络。具体来说,设计了一个师生框架来生成伪标签,并提出了一个伪标签划分模块来区分可靠和模糊的点集。基于此,设计了一种一致性和对比性学习策略,以充分利用监督信号来学习点云的特征。该框架在 ArCH 数据集和自收集的点云上进行了测试,这表明所提出的方法只需使用 0.1% 的注释点即可实现对建筑遗产的有效语义分割。
更新日期:2024-10-16
中文翻译:
使用教师指导的一致性和对比学习对建筑遗产进行弱监督 3D 点云语义分割
点云语义分割对于管理和保护建筑遗产非常重要。目前,完全监督的方法需要大量的注释数据,而弱监督方法很难直接转移到建筑遗产中。本文提出了一种端到端教师指导的一致性和对比学习弱监督 (TCCWS) 框架,用于建筑遗产点云语义分割,该框架可以充分利用有限的标记点来训练网络。具体来说,设计了一个师生框架来生成伪标签,并提出了一个伪标签划分模块来区分可靠和模糊的点集。基于此,设计了一种一致性和对比性学习策略,以充分利用监督信号来学习点云的特征。该框架在 ArCH 数据集和自收集的点云上进行了测试,这表明所提出的方法只需使用 0.1% 的注释点即可实现对建筑遗产的有效语义分割。