当前位置:
X-MOL 学术
›
Comput. Educ.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Reducing interpretative ambiguity in an educational environment with ChatGPT
Computers & Education ( IF 8.9 ) Pub Date : 2024-11-10 , DOI: 10.1016/j.compedu.2024.105182 Francisco Garcia-Varela, Zvi Bekerman, Miguel Nussbaum, Marcelo Mendoza, Joaquin Montero
Computers & Education ( IF 8.9 ) Pub Date : 2024-11-10 , DOI: 10.1016/j.compedu.2024.105182 Francisco Garcia-Varela, Zvi Bekerman, Miguel Nussbaum, Marcelo Mendoza, Joaquin Montero
The study posits that both concrete and abstract words are crucial for effective communication, particularly in educational contexts where the interplay between these forms of language intersects with linguistic, cognitive, and social stratification theories. A key challenge is balancing the efficiency of abstract language in conveying complex concepts with the accessibility of concrete language, which enhances student comprehension. Generative languages, with their capacity to manipulate symbols, offer a way to navigate this challenge by facilitating the structured and systematic representation and exploration of abstract concepts within their contexts. The central research question was: “How can generative languages assist educational stakeholders in articulating their ideas and actions more clearly by identifying and refining abstract terms?” To explore this, a protocol in English was developed for ChatGPT-4, featuring structured guidelines and prompts aimed at helping users achieve specific educational goals. In a pilot study involving 13 participants, ChatGPT-4 provided feedback, suggested improvements, and guided users through text interactions. One of the authors observed the participants, took notes on their behavior, and conducted brief post-exercise discussions to gauge their experiences. After the session, participants were asked to reflect on their experience and share their thoughts via email. The process helped participants refine their responses from abstract to more concrete terms, enhancing clarity and engagement with educational content. The ChatGPT-4 protocol effectively bridges the gap between abstract pedagogical theories and practical classroom application, training teachers to use vivid descriptions, relatable scenarios, and tangible examples. This study illustrates how artificial intelligence can successfully integrate teaching principles and learning theories to enhance educational practices.
中文翻译:
使用 ChatGPT 减少教育环境中的解释歧义
该研究认为,具体和抽象的词语对于有效沟通都至关重要,尤其是在这些语言形式之间的相互作用与语言、认知和社会分层理论相交的教育环境中。一个关键的挑战是平衡抽象语言在传达复杂概念方面的效率与具体语言的可访问性,从而提高学生的理解能力。生成语言具有操纵符号的能力,通过促进抽象概念在其上下文中的结构化和系统表示和探索,提供了一种应对这一挑战的方法。核心研究问题是:“生成语言如何通过识别和提炼抽象术语来帮助教育利益相关者更清楚地表达他们的想法和行动?为了探索这一点,为 ChatGPT-4 开发了一个英文协议,其中包含旨在帮助用户实现特定教育目标的结构化指南和提示。在一项涉及 13 名参与者的试点研究中,ChatGPT-4 提供了反馈、提出了改进建议,并指导用户进行文本交互。其中一位作者观察了参与者,记录了他们的行为,并进行了简短的运动后讨论以评估他们的体验。会议结束后,参与者被要求反思他们的经历并通过电子邮件分享他们的想法。该过程帮助参与者将他们的回答从抽象的术语细化为更具体的术语,从而提高了清晰度和对教育内容的参与度。ChatGPT-4 协议有效地弥合了抽象教学理论和实际课堂应用之间的差距,培训教师使用生动的描述、相关的场景和有形的例子。 本研究说明了人工智能如何成功地整合教学原则和学习理论以增强教育实践。
更新日期:2024-11-10
中文翻译:
使用 ChatGPT 减少教育环境中的解释歧义
该研究认为,具体和抽象的词语对于有效沟通都至关重要,尤其是在这些语言形式之间的相互作用与语言、认知和社会分层理论相交的教育环境中。一个关键的挑战是平衡抽象语言在传达复杂概念方面的效率与具体语言的可访问性,从而提高学生的理解能力。生成语言具有操纵符号的能力,通过促进抽象概念在其上下文中的结构化和系统表示和探索,提供了一种应对这一挑战的方法。核心研究问题是:“生成语言如何通过识别和提炼抽象术语来帮助教育利益相关者更清楚地表达他们的想法和行动?为了探索这一点,为 ChatGPT-4 开发了一个英文协议,其中包含旨在帮助用户实现特定教育目标的结构化指南和提示。在一项涉及 13 名参与者的试点研究中,ChatGPT-4 提供了反馈、提出了改进建议,并指导用户进行文本交互。其中一位作者观察了参与者,记录了他们的行为,并进行了简短的运动后讨论以评估他们的体验。会议结束后,参与者被要求反思他们的经历并通过电子邮件分享他们的想法。该过程帮助参与者将他们的回答从抽象的术语细化为更具体的术语,从而提高了清晰度和对教育内容的参与度。ChatGPT-4 协议有效地弥合了抽象教学理论和实际课堂应用之间的差距,培训教师使用生动的描述、相关的场景和有形的例子。 本研究说明了人工智能如何成功地整合教学原则和学习理论以增强教育实践。