当前位置:
X-MOL 学术
›
Travel Behaviour and Society
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Analysis of emotions of online car-hailing drivers under different driving conditions and scenarios
Travel Behaviour and Society ( IF 5.1 ) Pub Date : 2024-11-02 , DOI: 10.1016/j.tbs.2024.100937 Yongfeng Ma, Yaqian Xing, Ying Wu, Shuyan Chen, Fengxiang Qiao, Xiaojian Hu, Jian Lu
Travel Behaviour and Society ( IF 5.1 ) Pub Date : 2024-11-02 , DOI: 10.1016/j.tbs.2024.100937 Yongfeng Ma, Yaqian Xing, Ying Wu, Shuyan Chen, Fengxiang Qiao, Xiaojian Hu, Jian Lu
Emotion is an important factor that affects driving behavior, and thus, drivers’ emotions are closely related to overall traffic safety. We investigated the emotional expressions of online car-hailing drivers under two driving conditions: with passenger(s) and without passenger(s). We recruited 16 male car-hailing drivers and collected a total of 91.5 h of data using non-contact equipment. We employed FaceReader 8.0 software to analyze the collected video data and extract the drivers’ facial expression information, thereby identifying six emotions expressed by the drivers. We then compared the frequency of the occurrence of the six emotions between the two conditions. The frequency rates indicate that the drivers exhibited more emotions when no passengers were in the vehicle. The chi-square test results indicate significant differences in the drivers’ emotions under the two conditions. For example, happiness is related to chatting with passengers. Also, the drivers exhibited more aggressive driving behavior during trips without passengers, and such behavior often was accompanied by negative emotions, such as anger. We also investigated drivers’ emotions under three scenarios that often occur while online car-hailing drivers are working: driver distractions, passenger interaction, and the traffic environment. The understanding of drivers’ emotions and the relationships between those emotions and scenarios that take place under different driving conditions can facilitate the identification of drivers’ intentions and provide guidance for the development of safe driving assistance warning systems. Dangerous driving behavior can be reduced through intervention and the monitoring of drivers’ emotions for the enhanced overall safety of roadway travel.
中文翻译:
网约车司机在不同驾驶条件和场景下的情绪分析
情绪是影响驾驶行为的重要因素,因此,驾驶员的情绪与整体交通安全密切相关。我们调查了网约车司机在有乘客和无乘客两种驾驶条件下的情绪表达。我们招募了 16 名男性叫车司机,使用非接触式设备收集了总共 91.5 h 的数据。我们采用 FaceReader 8.0 软件对收集到的视频数据分析并提取驾驶员的面部表情信息,从而识别驾驶员表达的 6 种情绪。然后,我们比较了两种情况之间六种情绪发生的频率。频率表明,当车内没有乘客时,驾驶员表现出更多的情绪。卡方检验结果表明,在两种情况下,驾驶员的情绪存在显著差异。例如,快乐与与乘客聊天有关。此外,司机在没有乘客的行程中表现出更具攻击性的驾驶行为,这种行为往往伴随着愤怒等负面情绪。我们还调查了在线叫车司机工作时经常发生的三种情况下驾驶员的情绪:驾驶员分心、乘客互动和交通环境。了解驾驶员的情绪以及这些情绪与在不同驾驶条件下发生的场景之间的关系,可以促进识别驾驶员的意图,并为安全驾驶辅助警告系统的开发提供指导。通过干预和监测驾驶员的情绪,可以减少危险驾驶行为,从而提高道路行驶的整体安全性。
更新日期:2024-11-02
中文翻译:
网约车司机在不同驾驶条件和场景下的情绪分析
情绪是影响驾驶行为的重要因素,因此,驾驶员的情绪与整体交通安全密切相关。我们调查了网约车司机在有乘客和无乘客两种驾驶条件下的情绪表达。我们招募了 16 名男性叫车司机,使用非接触式设备收集了总共 91.5 h 的数据。我们采用 FaceReader 8.0 软件对收集到的视频数据分析并提取驾驶员的面部表情信息,从而识别驾驶员表达的 6 种情绪。然后,我们比较了两种情况之间六种情绪发生的频率。频率表明,当车内没有乘客时,驾驶员表现出更多的情绪。卡方检验结果表明,在两种情况下,驾驶员的情绪存在显著差异。例如,快乐与与乘客聊天有关。此外,司机在没有乘客的行程中表现出更具攻击性的驾驶行为,这种行为往往伴随着愤怒等负面情绪。我们还调查了在线叫车司机工作时经常发生的三种情况下驾驶员的情绪:驾驶员分心、乘客互动和交通环境。了解驾驶员的情绪以及这些情绪与在不同驾驶条件下发生的场景之间的关系,可以促进识别驾驶员的意图,并为安全驾驶辅助警告系统的开发提供指导。通过干预和监测驾驶员的情绪,可以减少危险驾驶行为,从而提高道路行驶的整体安全性。