当前位置:
X-MOL 学术
›
Comput. Methods Appl. Mech. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Modeling via peridynamics for damage and failure of hyperelastic composites
Computer Methods in Applied Mechanics and Engineering ( IF 6.9 ) Pub Date : 2024-11-04 , DOI: 10.1016/j.cma.2024.117494 Binbin Yin, Weikang Sun, Chuan Wang, K.M. Liew
Computer Methods in Applied Mechanics and Engineering ( IF 6.9 ) Pub Date : 2024-11-04 , DOI: 10.1016/j.cma.2024.117494 Binbin Yin, Weikang Sun, Chuan Wang, K.M. Liew
Modeling damage and failure behaviors of hyperelastic composites under large deformations is pivotal for advancing the design of cutting-edge elastomers used in biomedical engineering and soft robotics. However, existing methods struggle with capturing the non-linearities and singularities in the displacement field under such conditions. To address these difficulties, we propose a novel bond-based peridynamics (PD) framework with multiple advancements. First, we develop a PD bond strain model grounded in the nonlinear Piola-Kirchhoff stress-stretch relationship, precisely capturing hyperelasticity and ensuring full compliance with thermodynamic laws and kinematics in large deformation scenarios. Second, our framework employs a particle discretization technique that not only sidesteps the mesh distortion issues commonly encountered in grid-based methods subjected to large deformation but also significantly lowers the computational complexity due to the ease of numerical implementation of random inclusion distributions. Third, we propose, for the first time, a refined 3D hyperelastic model within the PD framework that enables a more comprehensive and accurate prediction of material responses to external loads, surpassing the limitations of conventional 2D simulations. Validation against experimental data demonstrates that our model accurately captures key physical phenomena in hyperelastic composites, such as spontaneous crack initiation and propagation, interface debonding, crack coalescence, and the formation of non-smooth crack surfaces. Crucially, this framework is versatile and adaptable to a wide range of engineered composite systems with different inclusions and matrices, making it a powerful tool for predicting and analyzing large deformation behaviors in various advanced applications.
中文翻译:
通过近场动力学对超弹性复合材料的损伤和失效进行建模
对超弹性复合材料在大变形下的损伤和失效行为进行建模,对于推进生物医学工程和软机器人技术中使用的尖端弹性体的设计至关重要。然而,在这种条件下,现有的方法难以捕捉位移场中的非线性和奇异性。为了解决这些困难,我们提出了一种具有多项进步的新型基于键的近场动力学 (PD) 框架。首先,我们开发了一个基于非线性 Piola-Kirchhoff 应力-拉伸关系的 PD 键应变模型,精确捕获超弹性并确保在大变形情况下完全符合热力学定律和运动学。其次,我们的框架采用了一种粒子离散化技术,该技术不仅回避了在承受大变形的基于网格的方法中常见的网格变形问题,而且由于随机包含分布的数值实现容易,因此显著降低了计算复杂性。第三,我们首次在 PD 框架内提出了一个改进的 3D 超弹性模型,该模型能够更全面、更准确地预测材料对外部载荷的响应,超越了传统 2D 模拟的局限性。根据实验数据的验证表明,我们的模型准确地捕捉了超弹性复合材料中的关键物理现象,例如自发裂纹的萌生和扩展、界面脱粘、裂纹聚结以及非光滑裂纹表面的形成。 至关重要的是,该框架用途广泛,适用于具有不同夹杂物和基体的各种工程复合材料系统,使其成为预测和分析各种高级应用中大变形行为的强大工具。
更新日期:2024-11-04
中文翻译:
通过近场动力学对超弹性复合材料的损伤和失效进行建模
对超弹性复合材料在大变形下的损伤和失效行为进行建模,对于推进生物医学工程和软机器人技术中使用的尖端弹性体的设计至关重要。然而,在这种条件下,现有的方法难以捕捉位移场中的非线性和奇异性。为了解决这些困难,我们提出了一种具有多项进步的新型基于键的近场动力学 (PD) 框架。首先,我们开发了一个基于非线性 Piola-Kirchhoff 应力-拉伸关系的 PD 键应变模型,精确捕获超弹性并确保在大变形情况下完全符合热力学定律和运动学。其次,我们的框架采用了一种粒子离散化技术,该技术不仅回避了在承受大变形的基于网格的方法中常见的网格变形问题,而且由于随机包含分布的数值实现容易,因此显著降低了计算复杂性。第三,我们首次在 PD 框架内提出了一个改进的 3D 超弹性模型,该模型能够更全面、更准确地预测材料对外部载荷的响应,超越了传统 2D 模拟的局限性。根据实验数据的验证表明,我们的模型准确地捕捉了超弹性复合材料中的关键物理现象,例如自发裂纹的萌生和扩展、界面脱粘、裂纹聚结以及非光滑裂纹表面的形成。 至关重要的是,该框架用途广泛,适用于具有不同夹杂物和基体的各种工程复合材料系统,使其成为预测和分析各种高级应用中大变形行为的强大工具。