当前位置: X-MOL 学术Comput. Methods Appl. Mech. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comparison of guaranteed lower eigenvalue bounds with three skeletal schemes
Computer Methods in Applied Mechanics and Engineering ( IF 6.9 ) Pub Date : 2024-10-30 , DOI: 10.1016/j.cma.2024.117477
Carsten Carstensen, Benedikt Gräßle, Emilie Pirch

Specially tailored skeletal schemes enable cell and face variables linked with a stabilisation and a fine-tuned parameter can provide guaranteed lower eigenvalue bounds for the Laplacian. This paper briefly presents a unified derivation of skeletal higher-order methods from Carstensen, Zhai, and Zhang (2020), Carstensen, Ern, and Puttkammer (2021), and Carstensen, Gräßle, and Tran (2024). It suggests a paradigm shift from conditional to unconditional lower eigenvalue bounds. Adaptive mesh-refining leads to optimal convergence rates in computational benchmark examples and underlines the superiority of higher-order methods.

中文翻译:


保证特征值下限边界与三种骨架方案的比较



专门定制的骨架方案使单元和面变量与稳定性相关联,并且微调参数可以为拉普拉斯算子提供有保证的下特征值边界。本文简要介绍了来自 Carstensen、Zhai 和 Zhang (2020)、Carstensen、Ern 和 Puttkammer (2021) 以及 Carstensen、Gräßle 和 Tran (2024) 的骨骼高阶方法的统一推导。它建议从有条件到无条件的下特征值边界的范式转变。自适应网格细化可在计算基准示例中实现最佳收敛速率,并强调高阶方法的优越性。
更新日期:2024-10-30
down
wechat
bug