当前位置:
X-MOL 学术
›
Comput. Methods Appl. Mech. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A study on the energy consistency in SPH surface tension modelling
Computer Methods in Applied Mechanics and Engineering ( IF 6.9 ) Pub Date : 2024-10-28 , DOI: 10.1016/j.cma.2024.117473 S. Marrone, M. Antuono, A. Agresta, A. Colagrossi
Computer Methods in Applied Mechanics and Engineering ( IF 6.9 ) Pub Date : 2024-10-28 , DOI: 10.1016/j.cma.2024.117473 S. Marrone, M. Antuono, A. Agresta, A. Colagrossi
In the present work the evolution of viscous drops oscillating under the action of surface tension is tackled. Thanks to its structure, the SPH scheme allows for an analysis of the energy balance that is rarely addressed to in the general Computational Fluid Dynamics literature for this kind of flows. A procedure for checking the consistency between the energy of the surface-tension force and the free-surface evolution is proposed. Such a procedure relies on well-known analytical relations for the surface tension and on the evaluation of the free-surface area through a level-set function. Several test cases, in both two and three dimensional frameworks, are considered for validation. The study is performed by selecting a specific SPH scheme with a specific single-phase surface tension model. In any case, the procedure proposed is general and extendable to other SPH surface tension models and SPH schemes.
中文翻译:
SPH 表面张力建模中能量一致性的研究
在本工作中,解决了在表面张力作用下振荡的粘性液滴的演变。由于其结构,SPH 方案允许对能量平衡进行分析,这在一般计算流体动力学文献中很少涉及此类流动。提出了一种检查表面张力和自由表面演化能量之间一致性的程序。这样的程序依赖于众所周知的表面张力解析关系,以及通过水平集函数对自由表面积的评估。考虑在二维和三维框架中验证多个测试用例。通过选择具有特定单相表面张力模型的特定 SPH 方案来执行该研究。无论如何,所提出的程序是通用的,并且可以扩展到其他 SPH 表面张力模型和 SPH 方案。
更新日期:2024-10-28
中文翻译:
SPH 表面张力建模中能量一致性的研究
在本工作中,解决了在表面张力作用下振荡的粘性液滴的演变。由于其结构,SPH 方案允许对能量平衡进行分析,这在一般计算流体动力学文献中很少涉及此类流动。提出了一种检查表面张力和自由表面演化能量之间一致性的程序。这样的程序依赖于众所周知的表面张力解析关系,以及通过水平集函数对自由表面积的评估。考虑在二维和三维框架中验证多个测试用例。通过选择具有特定单相表面张力模型的特定 SPH 方案来执行该研究。无论如何,所提出的程序是通用的,并且可以扩展到其他 SPH 表面张力模型和 SPH 方案。