npj Quantum Materials ( IF 5.4 ) Pub Date : 2024-11-14 , DOI: 10.1038/s41535-024-00702-x Haijun Cao, Jia-Tao Sun, Sheng Meng
Light-matter interactions have emerged as a new research focus recently offering promises of unveiling novel physics and leading to applications under nonequilibrium conditions. The quantized Hall conductivities predicted by Floquet theory assuming a Fermi-Dirac distribution however deviate from experimental observations. To resolve these puzzles, we consider the effect of nonequilibrium electron occupation to study the anomalous, valley, and spin Hall effects of a prototype monolayer transition metal dichalcogenide MoS2. We find that spin Hall conductivity can be effectively suppressed approaching zero value by linearly polarized light under near resonant excitations. In contrast, it is substantially enhanced by circularly polarized light, originating from optical selection rules and topological phase transitions. Besides, the quantized anomalous Hall conductivity is much reduced if nonequilibrium occupations of Floquet bands are considered. Our study provides a novel avenue for engineering various Hall effects in two-dimensional materials using light, holding great promises for future device applications.
中文翻译:
单层 MoS2 中异常霍尔效应的 Floquet 工程
光-物质相互作用最近已成为一个新的研究重点,有望揭示新的物理学并导致非平衡条件下的应用。然而,假设费米-狄拉克分布的 Floquet 理论预测的量子化霍尔电导率与实验观测结果不同。为了解决这些谜题,我们考虑了非平衡电子占据的影响,以研究原型单层过渡金属二硫化物 MoS2 的反常、谷和自旋霍尔效应。我们发现,在近谐振激发下,线性偏振光可以有效地抑制接近零值的自旋霍尔电导率。相比之下,它被源自光学选择规则和拓扑相变的圆偏振光大大增强。此外,如果考虑 Floquet 波段的非平衡占用,量子化的异常霍尔电导率会大大降低。我们的研究为利用光在二维材料中设计各种霍尔效应提供了一条新的途径,为未来的器件应用带来了巨大的希望。