npj Computational Materials ( IF 9.4 ) Pub Date : 2024-11-14 , DOI: 10.1038/s41524-024-01455-8 ZhaoJing Han, ShengBao Xia, ZeYu Chen, Yihui Guo, ZhaoXuan Li, Qinglian Huang, Xing-Jun Liu, Wei-Wei Xu
Superalloys are indispensable materials for the fabrication of high-temperature components in aircraft engines. The discovery of a novel class of γ/γ′ Co-Al-W alloys has ignited a surge of interest in Co-based superalloys, with the aspiration to transcend the inherent constraints of their Ni-based counterparts. However, the conventional methodologies utilized in the design and advancement of new γ/γ′ Co-based superalloys are frequently characterized by their laborious and resource-intensive nature. In this study, we employed a coupled Density Functional Theory (DFT) and machine learning (ML) approach to predict and analyze the stability of the crucial γ′ phase, which is instrumental in expediting the discovery of γ/γ′ Co-based alloys. A dataset comprised of thousands of reliable formation (Hf) and decomposition (Hd) energies was obtained through high-throughput DFT calculations. Through regression model selection and feature engineering, our trained Random Forest (RF) model achieved prediction accuracies of 98.07% for Hf and 97.05% for Hd. Utilizing the well-trained RF model, we predicted the energies of over 150,000 ternary and quaternary γ′ phases within the Co-Ni-Fe-Cr-Al-W-Ti-Ta-V-Mo-Nb system. The energy analyses revealed that the presence of Ni, Nb, Ta, Ti, and V significantly reduced the Hf and the Hd of γ′, while Mo and W deteriorate the stability by increasing both energy values. Interestingly, although Al reduces the Hf, it increases Hd, thereby adversely affecting the stability of γ′. Applying domain-specific screening based on our knowledge, we identified 1049 out of >150,000 compositions likely to form stable γ′ phases, predominantly distributed across 11 Al-containing systems and 25 Al-free systems. Combining the analysis of CALPHAD method, we experimentally synthesized two new Co-based alloys with γ/γ′ dual-phase microstructures, corroborating the reliability of our theoretical prediction model.
中文翻译:
通过将第一性原理与机器学习相结合,促进了新型 γ/γ' 钴基高温合金的发现
高温合金是制造飞机发动机高温部件不可或缺的材料。一类新型 γ/γ' Co-Al-W 合金的发现引发了人们对 Co 基高温合金的兴趣,人们希望超越其 Ni 基合金的固有限制。然而,用于设计和改进新型 γ/γ' 钴基高温合金的传统方法通常以其费力和资源密集型的性质为特征。在这项研究中,我们采用了密度泛函理论 (DFT) 和机器学习 (ML) 的耦合方法来预测和分析关键 γ' 相的稳定性,这有助于加快 γ/γ' 钴基合金的发现。通过高通量 DFT 计算获得了由数千个可靠的形成 (Hf) 和分解 (Hd) 能量组成的数据集。通过回归模型选择和特征工程,我们训练的随机森林 (RF) 模型实现了 Hf 的 98.07% 和 H d 的预测精度 97.05%。利用训练有素的射频模型,我们预测了 Co-Ni-Fe-Cr-Al-W-Ti-Ta-V-Mo-Nb 系统中超过 150,000 个三元和四元 γ' 相的能量。能量分析表明,Ni、Nb、Ta、Ti 和 V 的存在显著降低了 γ' 的 Hf 和 Hd,而 Mo 和 W 通过增加这两个能量值来降低稳定性。有趣的是,虽然 Al 降低了 Hf,但它增加了 Hd,从而对 γ' 的稳定性产生了不利影响。 根据我们的知识应用特定域筛选,我们在 >150,000 种成分中确定了 1049 种可能形成稳定的 γ′ 相,主要分布在 11 个含铝系统和 25 个无铝系统中。结合 CALPHAD 方法的分析,我们实验合成了两种具有 γ/γ' 双相微观结构的新型 Co 基合金,证实了我们理论预测模型的可靠性。