当前位置: X-MOL 学术Nucleic Acids Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
canSAR 2024—an update to the public drug discovery knowledgebase
Nucleic Acids Research ( IF 16.6 ) Pub Date : 2024-11-13 , DOI: 10.1093/nar/gkae1050
Phillip W Gingrich, Rezvan Chitsazi, Ansuman Biswas, Chunjie Jiang, Li Zhao, Joseph E Tym, Kevin M Brammer, Jun Li, Zhigang Shu, David S Maxwell, Jeffrey A Tacy, Ioan L Mica, Michael Darkoh, Patrizio di Micco, Kaitlyn P Russell, Paul Workman, Bissan Al-Lazikani

canSAR (https://cansar.ai) continues to serve as the largest publicly available platform for cancer-focused drug discovery and translational research. It integrates multidisciplinary data from disparate and otherwise siloed public data sources as well as data curated uniquely for canSAR. In addition, canSAR deploys a suite of curation and standardization tools together with AI algorithms to generate new knowledge from these integrated data to inform hypothesis generation. Here we report the latest updates to canSAR. As well as increasing available data, we provide enhancements to our algorithms to improve the offering to the user. Notably, our enhancements include a revised ligandability classifier leveraging Positive Unlabeled Learning that finds twice as many ligandable opportunities across the pocketome, and our revised chemical standardization pipeline and hierarchy better enables the aggregation of structurally related molecular records.

中文翻译:


canSAR 2024 — 公共药物研发知识库的更新



canSAR (https://cansar.ai) 仍然是以癌症为重点的药物发现和转化研究的最大公开平台。它集成了来自不同和孤立的公共数据源的多学科数据,以及为 canSAR 独家策划的数据。此外,canSAR 还部署了一套管理和标准化工具以及 AI 算法,从这些集成数据中生成新知识,为假设生成提供信息。在这里,我们报告了 canSAR 的最新更新。除了增加可用数据外,我们还增强了我们的算法,以改善为用户提供的服务。值得注意的是,我们的增强功能包括利用正未标记学习的修订后的配体性分类器,该分类器在整个 pocketome 中发现了两倍的可配体机会,并且我们修订后的化学标准化管道和层次结构更好地实现了结构相关分子记录的聚合。
更新日期:2024-11-13
down
wechat
bug