当前位置:
X-MOL 学术
›
J. Clin. Periodontol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Identifying Undiagnosed Diabetes and Prediabetes in the Dental Setting in an Asian Population—A Clinical Risk Model
Journal of Clinical Periodontology ( IF 5.8 ) Pub Date : 2024-11-13 , DOI: 10.1111/jcpe.14090 Hoe Kit Chee, Frank Abbas, Arie Jan van Winkelhoff, Geerten Has Tjakkes, Hla Myint Htoon, Huihua Li, Yvonne de Waal, Arjan Vissink, Chaminda Jayampath Seneviratne
Journal of Clinical Periodontology ( IF 5.8 ) Pub Date : 2024-11-13 , DOI: 10.1111/jcpe.14090 Hoe Kit Chee, Frank Abbas, Arie Jan van Winkelhoff, Geerten Has Tjakkes, Hla Myint Htoon, Huihua Li, Yvonne de Waal, Arjan Vissink, Chaminda Jayampath Seneviratne
AimTo assess the glycaemic status of Asian patients in a tertiary care dental setting and develop a risk model for undiagnosed diabetes mellitus (DM).Material and MethodsA total of 1074 participants completed a diabetes risk test questionnaire, full‐mouth periodontal examination and a point‐of‐care HbA1c finger‐prick blood test. Univariable logistic regression was performed to assess the effect of potential factors to predict DM, with confirmed diabetes as the outcome. Subsequently, multivariable logistic regression analysis with stepwise variable selection was employed to develop the final models for predicting DM.ResultsSixty‐five (6.1%) and 83 (7.7%) of the 1074 participants were medically confirmed with T2DM and prediabetes, respectively. The ‘best’ predictive risk model for DM included body mass index (BMI), family history of diabetes, smoking and a diagnosis of Stage III/IV or severe periodontitis with an area under the curve (AUC) of 0.717 (95% confidence interval, CI [0.689–0.744]) and 0.721 (95% CI [0.693–0.748]), respectively. Including the oral health measure marginally increased the AUC.ConclusionsDental patients clinically diagnosed with advanced periodontitis in combination with high BMI, positive family history of DM and smoking are potentially at high risk for DM and should be screened for DM and referred for medical confirmation and management.
中文翻译:
在亚洲人群的牙科环境中识别未确诊的糖尿病和糖尿病前期——临床风险模型
目的 评估亚洲患者在三级牙科护理环境中的血糖状况,并开发未确诊糖尿病 (DM) 的风险模型。材料和方法共有 1074 名参与者完成了糖尿病风险测试问卷、全口牙周检查和床旁 HbA1c 指尖采血测试。进行单变量 logistic 回归以评估潜在因素对 DM 的影响,以确诊糖尿病为结局。随后,采用逐步变量选择的多变量 logistic 回归分析来开发预测 DM 的最终模型。结果1074 名参与者中有 65 名 (6.1%) 和 83 名 (7.7%) 分别被医学证实患有 T2DM 和糖尿病前期。DM的“最佳”预测风险模型包括体重指数(BMI)、糖尿病家族史、吸烟以及III/IV期或严重牙周炎的诊断,曲线下面积(AUC)分别为0.717(95%置信区间,CI [0.689–0.744])和0.721(95% CI [0.693–0.748])。包括口腔健康措施略微增加了 AUC。结论临床诊断为晚期牙周炎合并高 BMI、DM 阳性家族史和吸烟的牙科患者可能处于 DM 的高危人群中,应进行 DM 筛查并转诊进行医学确认和管理。
更新日期:2024-11-13
中文翻译:
在亚洲人群的牙科环境中识别未确诊的糖尿病和糖尿病前期——临床风险模型
目的 评估亚洲患者在三级牙科护理环境中的血糖状况,并开发未确诊糖尿病 (DM) 的风险模型。材料和方法共有 1074 名参与者完成了糖尿病风险测试问卷、全口牙周检查和床旁 HbA1c 指尖采血测试。进行单变量 logistic 回归以评估潜在因素对 DM 的影响,以确诊糖尿病为结局。随后,采用逐步变量选择的多变量 logistic 回归分析来开发预测 DM 的最终模型。结果1074 名参与者中有 65 名 (6.1%) 和 83 名 (7.7%) 分别被医学证实患有 T2DM 和糖尿病前期。DM的“最佳”预测风险模型包括体重指数(BMI)、糖尿病家族史、吸烟以及III/IV期或严重牙周炎的诊断,曲线下面积(AUC)分别为0.717(95%置信区间,CI [0.689–0.744])和0.721(95% CI [0.693–0.748])。包括口腔健康措施略微增加了 AUC。结论临床诊断为晚期牙周炎合并高 BMI、DM 阳性家族史和吸烟的牙科患者可能处于 DM 的高危人群中,应进行 DM 筛查并转诊进行医学确认和管理。