当前位置: X-MOL 学术J. Comb. Optim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An upper bound for neighbor-connectivity of graphs
Journal of Combinatorial Optimization ( IF 0.9 ) Pub Date : 2024-11-13 , DOI: 10.1007/s10878-024-01235-6
Hongliang Ma, Baoyindureng Wu

The neighbor-connectivity of a graph G, denoted by \(\kappa _{NB}(G)\), is the least number of vertices such that removing their closed neighborhoods from G results in a graph that is empty, complete, or disconnected. In the paper, we show that for any graph G of order n, \(\kappa _{NB}(G)\le \lceil \sqrt{2n}\ \rceil -2\). We pose a conjecture that \(\kappa _{NB}(G)\le \lceil \sqrt{n}\ \rceil -1\) for a graph G of order n. For supporting it, we show that the conjecture holds for any triangle-free graphs, Cartesian, direct, lexicographic product of any two graphs.



中文翻译:


图形的邻居连通性的上限



G 的邻域连通性,用 \(\kappa _{NB}(G)\) 表示,是顶点的最小数量,因此从 G 中删除它们的闭合邻域会导致图为空、完整或断开连接。在本文中,我们表明,对于任何 n 阶的图 G\(\kappa _{NB}(G)\le \lceil \sqrt{2n}\ \rceil -2\)。我们假设 \(\kappa _{NB}(G)\le \lceil \sqrt{n}\ \rceil -1\) 对于一个 n 阶的图 G。为了支持它,我们证明该猜想适用于任何无三角形图、笛卡尔、直接、任意两个图的字典积。

更新日期:2024-11-14
down
wechat
bug