Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High-temperature carbon dioxide capture in a porous material with terminal zinc hydride sites
Science ( IF 44.7 ) Pub Date : 2024-11-14 , DOI: 10.1126/science.adk5697 Rachel C. Rohde, Kurtis M. Carsch, Matthew N. Dods, Henry Z. H. Jiang, Alexandra R. McIsaac, Ryan A. Klein, Hyunchul Kwon, Sarah L. Karstens, Yang Wang, Adrian J. Huang, Jordan W. Taylor, Yuto Yabuuchi, Nikolay V. Tkachenko, Katie R. Meihaus, Hiroyasu Furukawa, Danielle R. Yahne, Kaitlyn E. Engler, Karen C. Bustillo, Andrew M. Minor, Jeffrey A. Reimer, Martin Head-Gordon, Craig M. Brown, Jeffrey R. Long
Science ( IF 44.7 ) Pub Date : 2024-11-14 , DOI: 10.1126/science.adk5697 Rachel C. Rohde, Kurtis M. Carsch, Matthew N. Dods, Henry Z. H. Jiang, Alexandra R. McIsaac, Ryan A. Klein, Hyunchul Kwon, Sarah L. Karstens, Yang Wang, Adrian J. Huang, Jordan W. Taylor, Yuto Yabuuchi, Nikolay V. Tkachenko, Katie R. Meihaus, Hiroyasu Furukawa, Danielle R. Yahne, Kaitlyn E. Engler, Karen C. Bustillo, Andrew M. Minor, Jeffrey A. Reimer, Martin Head-Gordon, Craig M. Brown, Jeffrey R. Long
Carbon capture can mitigate point-source carbon dioxide (CO 2 ) emissions, but hurdles remain that impede the widespread adoption of amine-based technologies. Capturing CO 2 at temperatures closer to those of many industrial exhaust streams (>200°C) is of interest, although metal oxide absorbents that operate at these temperatures typically exhibit sluggish CO 2 absorption kinetics and instability to cycling. Here, we report a porous metal–organic framework featuring terminal zinc hydride sites that reversibly bind CO 2 at temperatures above 200°C—conditions that are unprecedented for intrinsically porous materials. Gas adsorption, structural, spectroscopic, and computational analyses elucidate the rapid, reversible nature of this transformation. Extended cycling and breakthrough analyses reveal that the material is capable of deep carbon capture at low CO 2 concentrations and high temperatures relevant to postcombustion capture.
中文翻译:
在具有末端锌氢化物位点的多孔材料中捕获高温二氧化碳
碳捕获可以减少点源二氧化碳 (CO 2) 排放,但阻碍胺基技术广泛采用的障碍仍然存在。在更接近许多工业废气流 (>200°C) 的温度下捕获 CO 2 是值得关注的,尽管在这些温度下运行的金属氧化物吸收剂通常表现出缓慢的 CO 2 吸收动力学和循环不稳定性。在这里,我们报道了一种多孔金属-有机框架,其末端锌氢化物位点在 2°C 以上的温度下可逆地结合 CO 2,这对于本质多孔材料来说是前所未有的。气体吸附、结构、光谱和计算分析阐明了这种转变的快速、可逆性质。扩展循环和突破性分析表明,该材料能够在低 CO2 浓度和与燃烧后捕获相关的高温下进行深度碳捕获。
更新日期:2024-11-14
中文翻译:
在具有末端锌氢化物位点的多孔材料中捕获高温二氧化碳
碳捕获可以减少点源二氧化碳 (CO 2) 排放,但阻碍胺基技术广泛采用的障碍仍然存在。在更接近许多工业废气流 (>200°C) 的温度下捕获 CO 2 是值得关注的,尽管在这些温度下运行的金属氧化物吸收剂通常表现出缓慢的 CO 2 吸收动力学和循环不稳定性。在这里,我们报道了一种多孔金属-有机框架,其末端锌氢化物位点在 2°C 以上的温度下可逆地结合 CO 2,这对于本质多孔材料来说是前所未有的。气体吸附、结构、光谱和计算分析阐明了这种转变的快速、可逆性质。扩展循环和突破性分析表明,该材料能够在低 CO2 浓度和与燃烧后捕获相关的高温下进行深度碳捕获。