当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Construction of Active Rh–TiOx Interfacial Sites on RhFeOx/P25 for Highly Efficient Hydrogenation of CO2 to Ethanol
ACS Catalysis ( IF 11.3 ) Pub Date : 2024-11-14 , DOI: 10.1021/acscatal.4c04954 Chenfan Gong, Hao Wang, Jian Zhang, Chengguang Yang, Xianni Bu, Haiyan Yang, Jiong Li, Peng Gao
ACS Catalysis ( IF 11.3 ) Pub Date : 2024-11-14 , DOI: 10.1021/acscatal.4c04954 Chenfan Gong, Hao Wang, Jian Zhang, Chengguang Yang, Xianni Bu, Haiyan Yang, Jiong Li, Peng Gao
Hydrogenation of CO2 to ethanol is an efficient process for the utilization of CO2 along with the production of value-added chemicals. However, CO2 hydrogenation to ethanol is a complicated reaction, requiring the catalyst to activate CO2 efficiently and accurately regulate the C–C coupling to achieve a high ethanol selectivity simultaneously. Herein, we report the synthesis of RhFeOx catalysts supported on TiO2 with different crystal phase compositions (anatase, rutile, and P25), which were applied for the selective CO2 hydrogenation to ethanol. The RhFeOx/P25 catalyst presented a high dispersion of Rh nanoparticles on the P25 support with abundant Rh0–Rhδ+–OV–Ti3+ (OV: oxygen vacancy) interfacial sites over the anatase/rutile junction. The optimized RhFeOx/P25 catalyst exhibited a high ethanol space–time yield of 18.7 mmol gcat–1 h–1 and a high Rh turnover frequency of 544.8 h–1 with 90.5% ethanol selectivity. An in-depth investigation via various ex situ and in situ characterizations as well as H2/D2 exchange and C2H4 pulse hydrogenation experiments demonstrated that the Rh0–Rhδ+–Ov–Ti3+ interfacial sites played a crucial role in the conversion of CO2 to ethanol. The surface Rh0 sites facilitated the CO2 activation and hydrogenation, while the Rh0–Rhδ+–Ov–Ti3+ interfacial sites boosted the C–C coupling to produce ethanol. The high-performance RhFeOx/P25 catalyst also provides an attractive route for highly efficient ethanol synthesis via CO2 hydrogenation.
中文翻译:
在 RhFeOx/P25 上构建活性 Rh-TiOx 界面位点,实现 CO2 高效加氢制乙醇
将 CO2 氢化为乙醇是利用 CO2 以及生产增值化学品的有效过程。然而,CO2 加氢制乙醇是一个复杂的反应,需要催化剂有效地激活 CO2 并准确调节 C-C 偶联,以同时实现高乙醇选择性。在此,我们报道了负载在 TiO2 上具有不同晶相组成(锐钛矿、金红石和 P25)的 RhFeOx 催化剂的合成,这些催化剂应用于选择性 CO2 加氢制乙醇。RhFeOx/P25 催化剂在 P25 载体上呈现 Rh 纳米颗粒的高分散性,在沉沸石/金红石结上具有丰富的 Rh0-Rh δ+–OV-Ti 3+(OV:氧空位)界面位点。优化的 RhFeOx/P25 催化剂表现出 18.7 mmol gcat–1 h–1 的高乙醇时空产率和 544.8 h–1 的高 Rh 周转频率,乙醇选择性为 90.5%。通过各种非原位和原位表征以及 H2/D2 交换和 C2H4 脉冲加氢实验的深入研究表明,Rh0–Rhδ–Ov–Ti3+ 界面位点在 CO2 转化为乙醇中起着至关重要的作用。表面 Rh0 位点促进了 CO2 活化和氢化,而 Rh0–Rhδ+–Ov-Ti 3+ 界面位点促进了 C-C 偶联以产生乙醇。 高性能 RhFeOx/P25 催化剂还为通过 CO2 加氢实现高效乙醇合成提供了一种有吸引力的途径。
更新日期:2024-11-14
中文翻译:
在 RhFeOx/P25 上构建活性 Rh-TiOx 界面位点,实现 CO2 高效加氢制乙醇
将 CO2 氢化为乙醇是利用 CO2 以及生产增值化学品的有效过程。然而,CO2 加氢制乙醇是一个复杂的反应,需要催化剂有效地激活 CO2 并准确调节 C-C 偶联,以同时实现高乙醇选择性。在此,我们报道了负载在 TiO2 上具有不同晶相组成(锐钛矿、金红石和 P25)的 RhFeOx 催化剂的合成,这些催化剂应用于选择性 CO2 加氢制乙醇。RhFeOx/P25 催化剂在 P25 载体上呈现 Rh 纳米颗粒的高分散性,在沉沸石/金红石结上具有丰富的 Rh0-Rh δ+–OV-Ti 3+(OV:氧空位)界面位点。优化的 RhFeOx/P25 催化剂表现出 18.7 mmol gcat–1 h–1 的高乙醇时空产率和 544.8 h–1 的高 Rh 周转频率,乙醇选择性为 90.5%。通过各种非原位和原位表征以及 H2/D2 交换和 C2H4 脉冲加氢实验的深入研究表明,Rh0–Rhδ–Ov–Ti3+ 界面位点在 CO2 转化为乙醇中起着至关重要的作用。表面 Rh0 位点促进了 CO2 活化和氢化,而 Rh0–Rhδ+–Ov-Ti 3+ 界面位点促进了 C-C 偶联以产生乙醇。 高性能 RhFeOx/P25 催化剂还为通过 CO2 加氢实现高效乙醇合成提供了一种有吸引力的途径。