Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Recent advances and future prospects in oxidative-reduction low-triggering-potential electrochemiluminescence strategies based on nanoparticle luminophores
Analyst ( IF 3.6 ) Pub Date : 2024-11-14 , DOI: 10.1039/d4an01314j Li Fu, Tianyuan Song, Qi Li, Guizheng Zou, Fuwei Zhang, Zongchao Li, Haotian Guan, Yingshu Guo
Analyst ( IF 3.6 ) Pub Date : 2024-11-14 , DOI: 10.1039/d4an01314j Li Fu, Tianyuan Song, Qi Li, Guizheng Zou, Fuwei Zhang, Zongchao Li, Haotian Guan, Yingshu Guo
The oxidative-reduction electrochemiluminescence (ECL) potential of a luminophore is one of the most significant parameters during light generation processes when considering the growing demand for anti-interference analysis techniques, electrode compatibility and the reduction of damage to biological molecules due to excessive excitation potential. Nanoparticle luminophores, including quantum dots (QDs) and metal nanoclusters (NCs), possess tremendous potential for forming various ECL sensors due to their adjustable surface states. However, few reviews focused on nanoparticle luminophore-based ECL systems for low-triggering-potential (LTP) oxidative-reduction ECL to avoid the possible interference and oxidative damage of biological molecules. This review summarizes the recent advances in the LTP oxidative-reduction ECL potential strategy with nanoparticle luminophores as ECL emitters, including matching efficient coreactants and nanoparticle luminophores, doping nanoparticle luminophores, constructing donor–acceptor systems, choosing suitable working electrodes, combining multiplex nanoparticle luminophores, and employing surface-engineering strategies. In the context of the different LTP ECL systems, potential-lowering strategies and bio-related applications are discussed in detail. Additionally, the future trends and challenges of low ECL-triggering-potential strategies are discussed.
中文翻译:
基于纳米颗粒发光团的氧化还原低触发电位电化学发光策略的最新进展与未来展望
考虑到对抗干扰分析技术、电极兼容性和减少因激发电位过大而对生物分子造成的损害的需求不断增长,发光团的氧化还原电化学发光 (ECL) 电位是光产生过程中最重要的参数之一。纳米粒子发光团,包括量子点 (QD) 和金属纳米团 (NC),由于其可调节的表面状态,具有形成各种 ECL 传感器的巨大潜力。然而,很少有综述关注基于纳米颗粒发光团的 ECL 系统,用于低触发电位 (LTP) 氧化还原 ECL,以避免生物分子可能的干扰和氧化损伤。本文总结了以纳米颗粒发光团作为 ECL 发射器的 LTP 氧化还原 ECL 电位策略的最新进展,包括匹配高效共反应物和纳米颗粒发光团、掺杂纳米颗粒发光团、构建供体-受体系统、选择合适的工作电极、组合多重纳米颗粒发光团以及采用表面工程策略。在不同的 LTP ECL 系统的背景下,详细讨论了降低电位的策略和生物相关的应用。此外,还讨论了低 ECL 触发潜力策略的未来趋势和挑战。
更新日期:2024-11-14
中文翻译:
基于纳米颗粒发光团的氧化还原低触发电位电化学发光策略的最新进展与未来展望
考虑到对抗干扰分析技术、电极兼容性和减少因激发电位过大而对生物分子造成的损害的需求不断增长,发光团的氧化还原电化学发光 (ECL) 电位是光产生过程中最重要的参数之一。纳米粒子发光团,包括量子点 (QD) 和金属纳米团 (NC),由于其可调节的表面状态,具有形成各种 ECL 传感器的巨大潜力。然而,很少有综述关注基于纳米颗粒发光团的 ECL 系统,用于低触发电位 (LTP) 氧化还原 ECL,以避免生物分子可能的干扰和氧化损伤。本文总结了以纳米颗粒发光团作为 ECL 发射器的 LTP 氧化还原 ECL 电位策略的最新进展,包括匹配高效共反应物和纳米颗粒发光团、掺杂纳米颗粒发光团、构建供体-受体系统、选择合适的工作电极、组合多重纳米颗粒发光团以及采用表面工程策略。在不同的 LTP ECL 系统的背景下,详细讨论了降低电位的策略和生物相关的应用。此外,还讨论了低 ECL 触发潜力策略的未来趋势和挑战。