当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-temperature 205Tl decay clarifies 205Pb dating in early Solar System
Nature ( IF 50.5 ) Pub Date : 2024-11-13 , DOI: 10.1038/s41586-024-08130-4
Guy Leckenby, Ragandeep Singh Sidhu, Rui Jiu Chen, Riccardo Mancino, Balázs Szányi, Mei Bai, Umberto Battino, Klaus Blaum, Carsten Brandau, Sergio Cristallo, Timo Dickel, Iris Dillmann, Dmytro Dmytriiev, Thomas Faestermann, Oliver Forstner, Bernhard Franczak, Hans Geissel, Roman Gernhäuser, Jan Glorius, Chris Griffin, Alexandre Gumberidze, Emma Haettner, Pierre-Michel Hillenbrand, Amanda Karakas, Tejpreet Kaur, Wolfram Korten, Christophor Kozhuharov, Natalia Kuzminchuk, Karlheinz Langanke, Sergey Litvinov, Yuri A. Litvinov, Maria Lugaro, Gabriel Martínez-Pinedo, Esther Menz, Bradley Meyer, Tino Morgenroth, Thomas Neff, Chiara Nociforo, Nikolaos Petridis, Marco Pignatari, Ulrich Popp, Sivaji Purushothaman, René Reifarth, Shahab Sanjari, Christoph Scheidenberger, Uwe Spillmann, Markus Steck, Thomas Stöhlker, Yoshiki K. Tanaka, Martino Trassinelli, Sergiy Trotsenko, László Varga, Diego Vescovi, Meng Wang, Helmut Weick, Andrés Yagüe Lopéz, Takayuki Yamaguchi, Yuhu Zhang, Jianwei Zhao

Radioactive nuclei with lifetimes on the order of millions of years can reveal the formation history of the Sun and active nucleosynthesis occurring at the time and place of its birth1,2. Among such nuclei whose decay signatures are found in the oldest meteorites, 205Pb is a powerful example, as it is produced exclusively by slow neutron captures (the s process), with most being synthesized in asymptotic giant branch (AGB) stars3,4,5. However, making accurate abundance predictions for 205Pb has so far been impossible because the weak decay rates of 205Pb and 205Tl are very uncertain at stellar temperatures6,7. To constrain these decay rates, we measured for the first time the bound-state β decay of fully ionized 205Tl81+, an exotic decay mode that only occurs in highly charged ions. The measured half-life is 4.7 times longer than the previous theoretical estimate8 and our 10% experimental uncertainty has eliminated the main nuclear-physics limitation. With new, experimentally backed decay rates, we used AGB stellar models to calculate 205Pb yields. Propagating those yields with basic galactic chemical evolution (GCE) and comparing with the 205Pb/204Pb ratio from meteorites9,10,11, we determined the isolation time of solar material inside its parent molecular cloud. We find positive isolation times that are consistent with the other s-process short-lived radioactive nuclei found in the early Solar System. Our results reaffirm the site of the Sun’s birth as a long-lived, giant molecular cloud and support the use of the 205Pb–205Tl decay system as a chronometer in the early Solar System.



中文翻译:


高温 205Tl 衰变阐明了太阳系早期的 205Pb 测年



寿命为数百万年的放射性原子核可以揭示太阳的形成历史和在其出生时间和地点发生的活跃核合成1,2。在最古老的陨石中发现衰变特征的原子核中,205Pb 是一个有力的例子,因为它完全由慢速中子捕获(s 过程)产生,其中大多数是在渐近巨分支 (AGB) 恒星3,4,5 中合成的。然而,到目前为止,对 205Pb 进行准确的丰度预测是不可能的,因为 205Pb 和 205Tl 的弱衰变速率在恒星温度下非常不确定6,7。为了限制这些衰变速率,我们首次测量了完全电离 205Tl81+ 的束缚态 β− 衰变,这是一种仅发生在高电荷离子中的奇异衰变模式。测得的半衰期比之前的理论估计8 长 4.7 倍,我们 10% 的实验不确定性消除了主要的核物理学限制。凭借新的、有实验支持的衰变率,我们使用 AGB 恒星模型来计算 205Pb 的产率。用基本的银河系化学演化 (GCE) 传播这些产率,并与陨石9,10,11205Pb/204Pb 比率进行比较,我们确定了太阳物质在其母分子云内的隔离时间。我们发现正隔离时间与太阳系早期发现的其他 s 过程短寿命放射性原子核一致。 我们的结果再次证实了太阳诞生的地方是一个长寿的巨大分子云,并支持在太阳系早期使用 205 Pb-205Tl 衰变系统作为天文台表。

更新日期:2024-11-14
down
wechat
bug