当前位置:
X-MOL 学术
›
J. Phys. Chem. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Tailoring Superatomic Stability with Transition Metals in Silicon Cages: Shrinking to M@Si15 (M = Re, Os, Ir)
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2024-11-14 , DOI: 10.1021/acs.jpclett.4c02797 Takumi Ichikawa, Kazuya Terasaka, Ayaka Sasaki, Atsushi Nakajima
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2024-11-14 , DOI: 10.1021/acs.jpclett.4c02797 Takumi Ichikawa, Kazuya Terasaka, Ayaka Sasaki, Atsushi Nakajima
The design of materials with intriguing electronic properties is crucial for advancing nanoscale technologies, where precise control over atomic structure and electronic behavior is essential. Metal-encapsulating silicon cage superatoms (SAs) provide a new paradigm for molecular-scale material design, allowing fine-tuning of both structure and electronic characteristics. The formation of superatoms mimicking halogens, noble gases, and alkali metals has been well-studied, particularly with M@Si16, where early transition metals from groups 3 to 5 stabilize within a Si16 cage, achieving a 68-electron configuration. For late transition metals with excess electrons, a Si15 cage offers enhanced stability by fulfilling the 68-electron rule with one fewer Si atom. This research synthesizes Si15 cage-SAs with rhenium (Re) from group 7 and iridium (Ir) from group 9 on p-type and n-type organic substrates. The stability of Re@Si15 and Ir@Si15 is evaluated via oxidative reactivity with X-ray photoelectron spectroscopy and theoretical calculations, including osmium (Os) from group 8. Re@Si15–, Os@Si150, and Ir@Si15+ exhibit superatomic behaviors similar to halogens, noble gases, and alkali metals due to the 68-electron shell closure. Among them, Re@Si15– on p-type organic substrates shows superior electronic and geometric properties. These findings advance our understanding of M@Sin systems for transition metals, addressing longstanding questions about their properties at n = 15 and 16.
中文翻译:
使用硅笼中的过渡金属定制超原子稳定性:收缩至 M@Si15 (M = Re, Os, Ir)
设计具有有趣电子特性的材料对于推进纳米级技术至关重要,其中对原子结构和电子行为的精确控制至关重要。金属封装硅笼超原子 (SA) 为分子尺度材料设计提供了一种新的范式,允许对结构和电子特性进行微调。模拟卤素、惰性气体和碱金属的超原子的形成已经得到了很好的研究,特别是 M@Si16,其中第 3 族至第 5 族的早期过渡金属稳定在 Si16 笼内,实现 68 电子构型。对于具有多余电子的晚期过渡金属,Si15 笼通过少一个 Si 原子来实现 68 电子规则,从而提供更高的稳定性。本研究在 p 型和 n 型有机衬底上合成了第 7 族的铼 (Re) 和第 9 族的铱 (Ir) 的 Si15 笼式 SAs。Re@Si15 和 Ir@Si15 的稳定性通过与 X 射线光电子能谱的氧化反应性和理论计算来评估,包括第 8 族的锇 (Os)。由于 68 电子壳层闭合,Re@Si15–、Os@Si150 和 Ir@Si15+ 表现出类似于卤素、惰性气体和碱金属的超原子行为。其中,Re@Si15– 在 p 型有机衬底上表现出优异的电子和几何性能。这些发现促进了我们对过渡金属 M@Sin 系统的理解,解决了长期以来关于它们在 n = 15 和 16 时的性能的问题。
更新日期:2024-11-14
中文翻译:
使用硅笼中的过渡金属定制超原子稳定性:收缩至 M@Si15 (M = Re, Os, Ir)
设计具有有趣电子特性的材料对于推进纳米级技术至关重要,其中对原子结构和电子行为的精确控制至关重要。金属封装硅笼超原子 (SA) 为分子尺度材料设计提供了一种新的范式,允许对结构和电子特性进行微调。模拟卤素、惰性气体和碱金属的超原子的形成已经得到了很好的研究,特别是 M@Si16,其中第 3 族至第 5 族的早期过渡金属稳定在 Si16 笼内,实现 68 电子构型。对于具有多余电子的晚期过渡金属,Si15 笼通过少一个 Si 原子来实现 68 电子规则,从而提供更高的稳定性。本研究在 p 型和 n 型有机衬底上合成了第 7 族的铼 (Re) 和第 9 族的铱 (Ir) 的 Si15 笼式 SAs。Re@Si15 和 Ir@Si15 的稳定性通过与 X 射线光电子能谱的氧化反应性和理论计算来评估,包括第 8 族的锇 (Os)。由于 68 电子壳层闭合,Re@Si15–、Os@Si150 和 Ir@Si15+ 表现出类似于卤素、惰性气体和碱金属的超原子行为。其中,Re@Si15– 在 p 型有机衬底上表现出优异的电子和几何性能。这些发现促进了我们对过渡金属 M@Sin 系统的理解,解决了长期以来关于它们在 n = 15 和 16 时的性能的问题。