当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Unlocking the Production of Biomass-Derived Plastic Monomer 2,5-Furandicarboxylic Acid at Industrial-Level Concentration
ACS Catalysis ( IF 11.3 ) Pub Date : 2024-11-13 , DOI: 10.1021/acscatal.4c05864 Weizhen Xie, Yining Zhang, Hang Zheng, Pengbo Lyu, Xixian Ke, Tianyuan Li, Huayu Fang, Yong Sun, Jinchao Dong, Lu Lin, Changlong Wang, Xing Tang
ACS Catalysis ( IF 11.3 ) Pub Date : 2024-11-13 , DOI: 10.1021/acscatal.4c05864 Weizhen Xie, Yining Zhang, Hang Zheng, Pengbo Lyu, Xixian Ke, Tianyuan Li, Huayu Fang, Yong Sun, Jinchao Dong, Lu Lin, Changlong Wang, Xing Tang
2,5-Furandicarboxylic acid (FDCA) is a promising biomass-derived alternative to fossil-based terephthalic acid. The catalytic oxidation of 5-hydroxymethylfurfural (HMF) to FDCA is widely recognized as a viable route for producing FDCA at industrially relevant concentrations (approximately 20 wt %); however, this has not yet been achieved. Toward this goal, we report that through controlled engineering of an oxygen-vacancy-enriched Mn/Co oxide as the support for Pt nanoparticles, a heterostructure of Pt/PtO2 with electron-rich interfacial Pt–O–Mn sites (Pt/Mn10Co1Ox-VC) is formed, significantly enhancing the adsorption and activation of O2, HMF, and its key intermediates. As a result, selective oxidation of both HMF (up to 40 wt %) and crude HMF (10 wt % and 70 wt % purity) was achieved with high FDCA yields ranging from 83% to 95% under base-free conditions, demonstrating strong economic feasibility and industrial potential for FDCA production. This work highlights the rational design of interfacial structures for the efficient oxidation of biomass-derived aldehydes and alcohols to bio-based dicarboxylic acids at industrially relevant concentrations, paving the way for FDCA to serve as a sustainable alternative to terephthalic acid as a comonomer in polyester production.
中文翻译:
在工业级浓度下解锁生物质衍生塑料单体 2,5-呋喃二羧酸的生产
2,5-呋喃二羧酸 (FDCA) 是一种很有前途的生物质衍生替代品,可替代化石基对苯二甲酸。5-羟甲基糠醛 (HMF) 催化氧化成 FDCA 被广泛认为是生产工业相关浓度(约 20 wt %)的 FDCA 的可行途径;然而,这尚未实现。为了实现这一目标,我们报道了通过控制工程富氧空位的 Mn/Co 氧化物作为 Pt 纳米颗粒的支持,形成了具有富电子界面 Pt-O-Mn 位点(Pt/Mn10Co1Ox-VC)的 Pt/PtO2 异质结构,显着增强了 O2 的吸附和活化、HMF 及其关键中间体。结果,在无碱条件下,HMF(高达 40 wt %)和粗 HMF(纯度为 10 wt % 和 70 wt %)均实现了选择性氧化,FDCA 产量从 83% 到 95% 不等,证明了 FDCA 生产具有很强的经济可行性和工业潜力。这项工作强调了界面结构的合理设计,用于将生物质衍生的醛和醇有效氧化为工业相关浓度的生物基二羧酸,为 FDCA 在聚酯生产中作为对苯二甲酸作为共聚单体的可持续替代品铺平了道路。
更新日期:2024-11-14
中文翻译:
在工业级浓度下解锁生物质衍生塑料单体 2,5-呋喃二羧酸的生产
2,5-呋喃二羧酸 (FDCA) 是一种很有前途的生物质衍生替代品,可替代化石基对苯二甲酸。5-羟甲基糠醛 (HMF) 催化氧化成 FDCA 被广泛认为是生产工业相关浓度(约 20 wt %)的 FDCA 的可行途径;然而,这尚未实现。为了实现这一目标,我们报道了通过控制工程富氧空位的 Mn/Co 氧化物作为 Pt 纳米颗粒的支持,形成了具有富电子界面 Pt-O-Mn 位点(Pt/Mn10Co1Ox-VC)的 Pt/PtO2 异质结构,显着增强了 O2 的吸附和活化、HMF 及其关键中间体。结果,在无碱条件下,HMF(高达 40 wt %)和粗 HMF(纯度为 10 wt % 和 70 wt %)均实现了选择性氧化,FDCA 产量从 83% 到 95% 不等,证明了 FDCA 生产具有很强的经济可行性和工业潜力。这项工作强调了界面结构的合理设计,用于将生物质衍生的醛和醇有效氧化为工业相关浓度的生物基二羧酸,为 FDCA 在聚酯生产中作为对苯二甲酸作为共聚单体的可持续替代品铺平了道路。