当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interfacial Engineering‐Assisted Energy Level Modulation Enhances the Photoelectrochemical Water Oxidation Performance of Bismuth Vanadate Photoanodes
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-11-13 , DOI: 10.1002/aenm.202404477
Kaige Tian, Zhuo Xu, Hua Yang, Guilin Chen, Pengfei An, Jing Zhang, Shengzhong (Frank) Liu, Junqing Yan

BiVO4 faces significant challenges for widespread application in photoelectrochemical (PEC) water oxidation due to its poor hole transport ability, high surface defect density, and sluggish water oxidation reaction kinetics. Employing interfacial engineering to assist in energy level modulation is an effective strategy to address these challenges. Herein, a CuCrO2 hole transport layer (HTL) is coupled and further grew NiCo‐MOF in situ to prepare a NiCo‐MOF‐CuCrO2‐BiVO4 composite photoanode. The novel composite photoanode not only achieves a photocurrent density of 5.75 mA cm−2 at 1.23 V versus a reversible hydrogen electrode (vs RHE) but also maintains stable operation for over 24 h. Comprehensive physicochemical characterization and density‐functional theory calculations confirm that the built‐in electric field generated by the p–n heterojunction formed between the CuCrO2 HTL and BiVO4 photoanode enhances the hole transport ability. Moreover, the NiCo‐MOF chelated on the photoanode surface not only passivates the surface defect states but also accelerates the kinetics of the water oxidation reaction. Under the synergistic effect of dual modification, the PEC water oxidation performance of the BiVO4 photoanode is dramatically improved. This pioneering work presents a MOF/HTL/BiVO4 configuration that provides a blueprint for the future development of integrated photoanodes for efficient solar energy conversion.

中文翻译:


界面工程辅助能级调制增强钒酸铋光阳极的光电化学水氧化性能



BiVO4 由于空穴传输能力差、表面缺陷密度高、水氧化反应动力学缓慢,在光电化学 (PEC) 水氧化中面临广泛应用的重大挑战。采用界面工程来协助能量级调制是应对这些挑战的有效策略。在此,耦合了 CuCrO2 空穴传输层 (HTL) 并进一步原位生长 NiCo-MOF 以制备 NiCo-MOF-CuCrO2-BiVO4 复合光阳极。与可逆氢电极 (vs RHE) 相比,新型复合光阳极不仅在 1.23 V 下实现了 5.75 mA cm-2 的光电流密度,而且还能保持稳定运行超过 24 小时。综合物理化学表征和密度泛函理论计算证实,CuCrO2 HTL 和 BiVO4 光阳极之间形成的 p-n 异质结产生的内置电场增强了空穴传输能力。此外,在光阳极表面螯合的 NiCo-MOF 不仅钝化了表面缺陷状态,还加速了水氧化反应的动力学。在双重改性的协同作用下,BiVO4 光阳极的 PEC 水氧化性能得到显著改善。这项开创性的工作提出了一种 MOF/HTL/BiVO4 配置,为用于高效太阳能转换的集成光阳极的未来发展提供了蓝图。
更新日期:2024-11-13
down
wechat
bug