当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Stretchable Energy Storage with Eutectic Gallium Indium Alloy
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-11-13 , DOI: 10.1002/aenm.202403760 Adit Gupta, Noah Al‐Shamery, Jian Lv, Gurunathan Thangavel, Jinwoo Park, Daniel Mandler, Pooi See Lee
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-11-13 , DOI: 10.1002/aenm.202403760 Adit Gupta, Noah Al‐Shamery, Jian Lv, Gurunathan Thangavel, Jinwoo Park, Daniel Mandler, Pooi See Lee
The integration of electronics with the human body or wearables necessitates the evolution of energy storage devices capable of seamless adaptation to the conformability of the skin and textiles. This work focuses on developing an intrinsically stretchable electrode prepared by sedimenting the liquid metal particles in a conductive stretchable matrix. The liquid metal‐based electrode can be stretched to ≈900% strain, and its conductivity increases by extending to 250% and retaining its initial conductivity at 500% strain. Benefitting from these properties, the assembled all‐solid‐state energy storage device provides high stretchability of up to 150% strain and a capacity of 0.42 mAh cm−3 at a high coulombic efficiency of 90%. The charge storage mechanism is investigated by probing the electrode/electrolyte interface, uncovering the intricate gallium‐bis(trifluoromethane)sulfonimide (Ga‐TFSI) complexation during electrochemical cycling through in situ Raman spectroscopy, ex situ X‐ray photoelectron spectroscopy (XPS) analyses, and density functional theory (DFT) calculations. This work offers a promising avenue for the advancement of stretchable batteries.
中文翻译:
采用共晶镓铟合金的可伸缩储能
电子设备与人体或可穿戴设备的集成需要能够无缝适应皮肤和纺织品的顺应性的储能设备的发展。这项工作的重点是开发一种本征可拉伸电极,该电极通过将液态金属颗粒沉淀在导电可拉伸基质中来制备。液态金属基电极可以拉伸至 ≈900% 的应变,其电导率通过扩展到 250% 并保持在 500% 应变下的初始电导率而增加。得益于这些特性,组装的全固态储能器件可提供高达 150% 应变的高拉伸性和 0.42 mAh cm-3 的容量,库仑效率高达 90%。通过探测电极/电解质界面,通过原位拉曼光谱、非原位 X 射线光电子能谱 (XPS) 分析和密度泛函理论 (DFT) 计算,揭示电化学循环过程中错综复杂的镓-双(三氟甲烷)磺酰亚胺 (Ga-TFSI) 络合,研究电荷存储机制。这项工作为可伸缩电池的发展提供了一条有前途的途径。
更新日期:2024-11-13
中文翻译:
采用共晶镓铟合金的可伸缩储能
电子设备与人体或可穿戴设备的集成需要能够无缝适应皮肤和纺织品的顺应性的储能设备的发展。这项工作的重点是开发一种本征可拉伸电极,该电极通过将液态金属颗粒沉淀在导电可拉伸基质中来制备。液态金属基电极可以拉伸至 ≈900% 的应变,其电导率通过扩展到 250% 并保持在 500% 应变下的初始电导率而增加。得益于这些特性,组装的全固态储能器件可提供高达 150% 应变的高拉伸性和 0.42 mAh cm-3 的容量,库仑效率高达 90%。通过探测电极/电解质界面,通过原位拉曼光谱、非原位 X 射线光电子能谱 (XPS) 分析和密度泛函理论 (DFT) 计算,揭示电化学循环过程中错综复杂的镓-双(三氟甲烷)磺酰亚胺 (Ga-TFSI) 络合,研究电荷存储机制。这项工作为可伸缩电池的发展提供了一条有前途的途径。