当前位置:
X-MOL 学术
›
Geophys. Res. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Increased Freezing Temperature of Clouds Over China Due To Anthropogenic Pollution
Geophysical Research Letters ( IF 4.6 ) Pub Date : 2024-11-13 , DOI: 10.1029/2024gl109086 Baiwan Pan, Dantong Liu, Ping Tian, Delong Zhao, Yuanmou Du, Siyuan Li, Kang Hu, Dawei Hu, Bing Sun, Chenjie Yu, Ying Chen, Weijun Li, Mengyu Huang, Honghui Xu, Shuangzhi You
Geophysical Research Letters ( IF 4.6 ) Pub Date : 2024-11-13 , DOI: 10.1029/2024gl109086 Baiwan Pan, Dantong Liu, Ping Tian, Delong Zhao, Yuanmou Du, Siyuan Li, Kang Hu, Dawei Hu, Bing Sun, Chenjie Yu, Ying Chen, Weijun Li, Mengyu Huang, Honghui Xu, Shuangzhi You
The temperature for cloud glaciation importantly determines the initialization of precipitation and lifetime of clouds. The role of anthropogenic pollutants as ice nucleating particles (INPs) to determine the cloud glaciation remains uncertain. In this study, based on satellite radar and lidar observations, the clouds either in pure liquid or mixed-phase with liquid top were statistically analyzed over China during 2006–2019, to obtain the transition freezing temperature (T*) of cloud top where mixed-phase becomes more frequent than pure water, with further validation by the aircraft in situ measurements. Anthropogenic pollution was observed to raise T* up to −9°C, significantly increasing it by approximately 5°C per unit of aerosol optical depth. The results provide regional-scale evidence that anthropogenic pollutants act as efficient INPs, increasing the freezing temperature of mixed-phase clouds.
更新日期:2024-11-13