当前位置:
X-MOL 学术
›
Environ. Sci.: Nano
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Unveiling intrinsic electrochemical mechanism of supporting electrolyte and interaction mechanism in electrochemical oxidation tetracycline with nano-PbO2
Environmental Science: Nano ( IF 5.8 ) Pub Date : 2024-11-12 , DOI: 10.1039/d4en00842a Yaxuan Wang, Peitong Cen, Hongyu Wang, Chenxi Li, Ziyin Xia, Guoqing Wu, Meng Li, Lei Huang, Jia Yan, Shaoqi Zhou, Ce-Hui Mo, Hongguo Zhang
Environmental Science: Nano ( IF 5.8 ) Pub Date : 2024-11-12 , DOI: 10.1039/d4en00842a Yaxuan Wang, Peitong Cen, Hongyu Wang, Chenxi Li, Ziyin Xia, Guoqing Wu, Meng Li, Lei Huang, Jia Yan, Shaoqi Zhou, Ce-Hui Mo, Hongguo Zhang
Electrochemical oxidation (EO) for the removal of antibiotics is a promising technique because of green and sustainable electrical−to−chemical energy conversion. However, the interaction mechanism between different electrolytes molecule and organic pollution along with the generation pathway of reactive oxygen species remain unclear. Here, the β−PbO2 electrode was successfully prepared and employed as an effective tool for organic pollution removal. The EO process with β−PbO2 electrode and Na2SO4 electrolyte could completely remove tetracycline (TC) and achieve an impressive kinetic rate constant of 0.239 min−1. Quantum chemical calculations confirmed that hydrogen bonding was the primary binding force between TC and Na2SO4. Density functional theory calculations emphasized the key roles of radical and non−radical pathways in TC removal via the key reaction site (O atom in PbO2). Consequently, this study provided a novel insight into the intrinsic electrochemical behavior changes under various electrolyte, paving the way for novel electrochemical process in water treatment applications.
中文翻译:
揭示电解质负载电解质的本征电化学机制以及电化学氧化四环素与纳米 PbO2 的相互作用机制
用于去除抗生素的电化学氧化 (EO) 是一种很有前途的技术,因为它具有绿色和可持续的电能到化学能转换。然而,不同电解质分子与有机污染以及活性氧生成途径之间的相互作用机制仍不清楚。在这里,成功制备了 β−PbO2 电极,并用作去除有机污染的有效工具。使用 β−PbO2 电极和 Na2SO4 电解质的 EO 过程可以完全去除四环素 (TC),并实现令人印象深刻的 0.239 min−1 动力学速率常数。量子化学计算证实,氢键是 TC 和 Na2SO4 之间的主要结合力。密度泛函理论计算强调了自由基和非自由基途径在通过关键反应位点(PbO2 中的 O 原子)去除 TC 中的关键作用。因此,这项研究为各种电解质下的内禀电化学行为变化提供了新的见解,为水处理应用中的新型电化学过程铺平了道路。
更新日期:2024-11-13
中文翻译:
揭示电解质负载电解质的本征电化学机制以及电化学氧化四环素与纳米 PbO2 的相互作用机制
用于去除抗生素的电化学氧化 (EO) 是一种很有前途的技术,因为它具有绿色和可持续的电能到化学能转换。然而,不同电解质分子与有机污染以及活性氧生成途径之间的相互作用机制仍不清楚。在这里,成功制备了 β−PbO2 电极,并用作去除有机污染的有效工具。使用 β−PbO2 电极和 Na2SO4 电解质的 EO 过程可以完全去除四环素 (TC),并实现令人印象深刻的 0.239 min−1 动力学速率常数。量子化学计算证实,氢键是 TC 和 Na2SO4 之间的主要结合力。密度泛函理论计算强调了自由基和非自由基途径在通过关键反应位点(PbO2 中的 O 原子)去除 TC 中的关键作用。因此,这项研究为各种电解质下的内禀电化学行为变化提供了新的见解,为水处理应用中的新型电化学过程铺平了道路。