当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A self-adsorption molecule passivated interface enables efficient and stable lithium metal batteries
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-11-13 , DOI: 10.1039/d4ee02903h Gongxun Lu, Xinru Wu, Miaofei Huang, Mengtian Zhang, Zhihong Piao, Xiongwei Zhong, Chuang Li, Yanze Song, Chengshuai Chang, Kuang Yu, Guangmin Zhou
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-11-13 , DOI: 10.1039/d4ee02903h Gongxun Lu, Xinru Wu, Miaofei Huang, Mengtian Zhang, Zhihong Piao, Xiongwei Zhong, Chuang Li, Yanze Song, Chengshuai Chang, Kuang Yu, Guangmin Zhou
Despite the theoretical promise of attaining high energy densities, practical applications of lithium metal batteries (LMBs) remain hindered by the inadequacies of the electrode/electrolyte interface and unsatisfied cycling stability. Herein, a self-adsorption molecule with polar groups was designed and introduced in ether electrolyte, aiming to form a high-density and ordered molecular layer occupying active sites on the electrode surface, while restricting electrolyte molecule penetration into the interface. This self-adsorption molecule favors the formation of a robust anion-rich cathode/anode electrolyte interphase due to the change of the interfacial solvation structure, thus inhibiting solvent decomposition and enhancing interfacial stability. Consequently, the addition of this molecule into low-concentration ether electrolytes notably upgrades the electrochemical performance of the LiNi0.8Co0.1Mn0.1O2 (NCM811)||Li battery, which enables a high capacity retention of 87.2% after 250 cycles at 4.5 V. Moreover, the NMC811||Li pouch cells achieve stable cycling over 150 cycles with a capacity retention of 92.9% at a low negative/positive capacity ratio of 2.7 with a lean electrolyte. This interface passivation design strategy provides a promising path toward high-energy, durable, and safe rechargeable LMBs.
中文翻译:
自吸附分子钝化界面可实现高效稳定的锂金属电池
尽管理论上有望实现高能量密度,但锂金属电池 (LMB) 的实际应用仍然受到电极/电解质界面不足和循环稳定性不满足的阻碍。在此,设计了一种具有极性基团的自吸附分子并将其引入醚电解质中,旨在形成一个高密度有序的分子层,占据电极表面的活性位点,同时限制电解质分子渗透到界面中。由于界面溶剂化结构的变化,这种自吸附分子有利于形成强大的富含阴离子的阴极/阳极电解质界面,从而抑制溶剂分解并增强界面稳定性。因此,将该分子添加到低浓度醚电解质中显着提升了 LiNi0.8Co0.1Mn0.1O2 (NCM811)||锂电池,在 4.5 V 下循环 250 次后可实现 87.2% 的高容量保持率。此外,NMC811||锂软包电池在 2.7 的负/正容量比和 2.7 的稀电解质下实现了超过 150 次循环的稳定循环,容量保持率为 92.9%。这种界面钝化设计策略为实现高能量、耐用和安全的可充电 LMB 提供了一条有前途的道路。
更新日期:2024-11-13
中文翻译:
自吸附分子钝化界面可实现高效稳定的锂金属电池
尽管理论上有望实现高能量密度,但锂金属电池 (LMB) 的实际应用仍然受到电极/电解质界面不足和循环稳定性不满足的阻碍。在此,设计了一种具有极性基团的自吸附分子并将其引入醚电解质中,旨在形成一个高密度有序的分子层,占据电极表面的活性位点,同时限制电解质分子渗透到界面中。由于界面溶剂化结构的变化,这种自吸附分子有利于形成强大的富含阴离子的阴极/阳极电解质界面,从而抑制溶剂分解并增强界面稳定性。因此,将该分子添加到低浓度醚电解质中显着提升了 LiNi0.8Co0.1Mn0.1O2 (NCM811)||锂电池,在 4.5 V 下循环 250 次后可实现 87.2% 的高容量保持率。此外,NMC811||锂软包电池在 2.7 的负/正容量比和 2.7 的稀电解质下实现了超过 150 次循环的稳定循环,容量保持率为 92.9%。这种界面钝化设计策略为实现高能量、耐用和安全的可充电 LMB 提供了一条有前途的道路。