当前位置:
X-MOL 学术
›
Energy Storage Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Interface engineering of electron-ion dual transmission channels for ultra-long lifespan quasi-solid zinc-ion batteries
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-11-12 , DOI: 10.1016/j.ensm.2024.103903 Dengke Wang, Danyang Zhao, Le Chang, Yi Zhang, Weiyue Wang, Wenming Zhang, Qiancheng Zhu
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-11-12 , DOI: 10.1016/j.ensm.2024.103903 Dengke Wang, Danyang Zhao, Le Chang, Yi Zhang, Weiyue Wang, Wenming Zhang, Qiancheng Zhu
Hydrogel electrolytes have emerged as effective strategies to prolong the lifespan of aqueous zinc ion batteries (AZIBs). However, dendrites and side reactions are still inescapable due to the residual active water and chaotic migration of Zn2+ . Herein, a super stable Zn anode is realized through the synergistic effect of interfacial electron-ion dual transmission channels (EIDC) and an intermediate sodium alginate (SA) gel. Specifically, the SA gel can adjust the solvation structure of Zn2+ and weaken the strong bonding of Zn2+ and H2 O molecules. The EIDC polymer layer (PEDOT:PSS) is engineered on the SA hydrogel surfaces, in which PSS chains can offer uniform ion transmission channels via the electrostatic interaction between SO3 – groups and Zn2+ . While another PEDOT chains can provide electron conducting channels through the conjugated π- π bonds to accelerate charge exchange. Benefiting from the synergistic effect of EIDC polymer layer and SA gel, the as-prepared SA/EIDC gel electrolyte achieves a high ionic conductivity of 41 mS cm–1 . The Zn//Zn symmetric batteries exhibit a super-long lifespan of 6750 h at 1 mA cm–2 and 1 mAh cm–2 (>9 months), and cycling life of MnO2 -Zn full battery surpasses 4000 cycles. This work presents a new perspective on designing hydrogel electrolytes towards ultra-long lifespan ZIBs.
中文翻译:
超长寿命准固体锌离子电池的电子离子双传输通道接口工程
水凝胶电解质已成为延长水性锌离子电池 (AZIB) 使用寿命的有效策略。然而,由于 Zn2+ 的残留活性水和混沌迁移,枝晶和副反应仍然是不可避免的。在此,通过界面电子-离子双传输通道 (EIDC) 和中间海藻酸钠 (SA) 凝胶的协同作用,实现了超稳定的 Zn 负极。具体来说,SA 凝胶可以调节 Zn2+ 的溶剂化结构,减弱 Zn2+ 和 H2O 分子的强键合。EIDC 聚合物层 (PEDOT:PSS) 设计在 SA 水凝胶表面,其中 PSS 链可以通过 SO3– 基团和 Zn2+ 之间的静电相互作用提供均匀的离子传输通道。而另一种 PEDOT 链可以通过共轭的 π-π 键提供电子导电通道,以加速电荷交换。得益于 EIDC 聚合物层和 SA 凝胶的协同作用,所制备的 SA/EIDC 凝胶电解质实现了 41 mS cm–1 的高离子电导率。Zn//Zn 对称电池在 1 mA cm–2 和 1 mAh cm–2 下具有 6750 小时的超长使用寿命(>9 个月),MnO2-Zn 满电池的循环寿命超过 4000 次循环。这项工作为设计水凝胶电解质以实现超长寿命 ZIB 提出了新的视角。
更新日期:2024-11-12
中文翻译:
超长寿命准固体锌离子电池的电子离子双传输通道接口工程
水凝胶电解质已成为延长水性锌离子电池 (AZIB) 使用寿命的有效策略。然而,由于 Zn2+ 的残留活性水和混沌迁移,枝晶和副反应仍然是不可避免的。在此,通过界面电子-离子双传输通道 (EIDC) 和中间海藻酸钠 (SA) 凝胶的协同作用,实现了超稳定的 Zn 负极。具体来说,SA 凝胶可以调节 Zn2+ 的溶剂化结构,减弱 Zn2+ 和 H2O 分子的强键合。EIDC 聚合物层 (PEDOT:PSS) 设计在 SA 水凝胶表面,其中 PSS 链可以通过 SO3– 基团和 Zn2+ 之间的静电相互作用提供均匀的离子传输通道。而另一种 PEDOT 链可以通过共轭的 π-π 键提供电子导电通道,以加速电荷交换。得益于 EIDC 聚合物层和 SA 凝胶的协同作用,所制备的 SA/EIDC 凝胶电解质实现了 41 mS cm–1 的高离子电导率。Zn//Zn 对称电池在 1 mA cm–2 和 1 mAh cm–2 下具有 6750 小时的超长使用寿命(>9 个月),MnO2-Zn 满电池的循环寿命超过 4000 次循环。这项工作为设计水凝胶电解质以实现超长寿命 ZIB 提出了新的视角。