当前位置: X-MOL 学术J. Clean. Prod. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigating the environmental impacts of lithium-oxygen battery cathode production: A comprehensive assessment of the effects associated with oxygen cathode manufacturing
Journal of Cleaner Production ( IF 9.7 ) Pub Date : 2024-11-12 , DOI: 10.1016/j.jclepro.2024.144199
Aylar Narimani-Qurtlar, Ali Sayyah, Sara Pakseresht, Jafar Mostafaei, Hatem Akbulut, Tugrul Cetinkaya, Elnaz Asghari, Aligholi Niaei

Lithium-oxygen batteries offer remarkably high energy density compared to current lithium-ion batteries. The key to their electrochemical performance lies in the processes occurring at the air cathode. However, the complexity of these reactions, coupled with the by-products generated during discharge, can make the reaction process slow or impede their efficiency. This study evaluates the environmental impact of high-efficiency lithium-oxygen batteries cathodes, including titanium oxide composites, graphene-based composites and activated carbon-based composites, through a life cycle assessment across 18 impact categories using a cradle-to-gate approach with a functional unit of 25 kWh. Results show that active material production was the largest contributor to environmental impact, particularly Global Warming Potential. Among the evaluated cathodes, reduced graphene oxide/α-mnaganese oxide/palladium (rGO/α-MnO2/Pd) demonstrated the highest environmental impact, with a global warming potential of 1130.71 kg carbon dioxide from active material production, due to its energy-intensive synthesis and the use of chemicals like sulfuric acid, sodium borohydride, hydrochloric acid, and hydrogen peroxide. Additionally, the rGO/α-MnO2/Pd cathode had the highest Human Toxicity Potential and Ozone Depletion Potential. Batteries with graphene-based cathodes achieved a specific capacity of 7500 mAh.g−1, underscoring their performance potential while highlighting the need for more sustainable cathode manufacturing methods. These findings emphasize the environmental considerations necessary for large-scale lithium-oxygen batteries implementation.

中文翻译:


调查锂氧电池阴极生产对环境的影响:与氧阴极制造相关的影响的综合评估



与目前的锂离子电池相比,锂氧电池具有非常高的能量密度。其电化学性能的关键在于空气阴极处发生的过程。然而,这些反应的复杂性,加上排放过程中产生的副产物,会使反应过程变慢或阻碍其效率。本研究通过使用功能单元为 25 kWh 的摇篮到大门方法,对 18 个影响类别进行生命周期评估,评估高效锂氧电池阴极(包括氧化钛复合材料、石墨烯基复合材料和活性炭基复合材料)的环境影响。结果表明,活性材料生产是造成环境影响的最大因素,尤其是全球变暖潜能值。在评估的阴极中,还原氧化石墨烯/α-锰氧化物/钯 (rGO/α-MnO2/Pd) 对环境的影响最大,由于其能源密集型合成和使用硫酸、硼氢化钠、盐酸和过氧化氢等化学物质,活性材料生产产生的全球变暖潜能值为 1130.71 千克二氧化碳。此外,rGO/α-MnO2/Pd 阴极具有最高的人类毒性潜力和臭氧消耗潜力。带有石墨烯基阴极的电池实现了 7500 mAh.g−1 的比容量,强调了它们的性能潜力,同时强调了对更可持续的阴极制造方法的需求。这些发现强调了大规模实施锂氧电池所需的环境考虑因素。
更新日期:2024-11-16
down
wechat
bug