当前位置:
X-MOL 学术
›
Environ. Pollut.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Metagenomic approaches in bioremediation of environmental pollutants
Environmental Pollution ( IF 7.6 ) Pub Date : 2024-11-12 , DOI: 10.1016/j.envpol.2024.125297 Dixita Chettri, Ashwani Kumar Verma, Manisha Chirania, Anil Kumar Verma
Environmental Pollution ( IF 7.6 ) Pub Date : 2024-11-12 , DOI: 10.1016/j.envpol.2024.125297 Dixita Chettri, Ashwani Kumar Verma, Manisha Chirania, Anil Kumar Verma
Metagenomics has emerged as a pivotal tool in bioremediation, providing a deeper understanding of the structure and function of the microbial communities involved in pollutant degradation. By circumventing the limitations of traditional culture-based methods, metagenomics enables comprehensive analysis of microbial ecosystems and facilitates the identification of new genes and metabolic pathways that are critical for bioremediation. Advanced sequencing technologies combined with computational and bioinformatics approaches have greatly enhanced our ability to detect sources of pollution and monitor dynamic changes in microbial communities during the bioremediation process. These tools enable the precise identification of key microbial players and their functional roles, and provide a deeper understanding of complex biodegradation networks. The integration of artificial intelligence (AI) with machine learning algorithms has accelerated the process of discovery of novel genes associated with bioremediation and has optimized metabolic pathway prediction. Novel strategies, including sequencing techniques and AI-assisted analysis, have the potential to revolutionize bioremediation by enabling the development of highly efficient, targeted, and sustainable remediation strategies for various contaminated environments. However, the complexity of microbial interactions, data interpretation, and high cost of these advanced technologies remain challenging. Future research should focus on improving computational tools, reducing costs, and integrating multidisciplinary approaches to overcome these limitations.
中文翻译:
环境污染物生物修复的宏基因组学方法
宏基因组学已成为生物修复的关键工具,可以更深入地了解参与污染物降解的微生物群落的结构和功能。通过规避传统基于培养的方法的局限性,宏基因组学能够对微生物生态系统进行全面分析,并有助于识别对生物修复至关重要的新基因和代谢途径。先进的测序技术与计算和生物信息学方法相结合,大大增强了我们在生物修复过程中检测污染源和监测微生物群落动态变化的能力。这些工具能够精确识别关键微生物参与者及其功能作用,并更深入地了解复杂的生物降解网络。人工智能 (AI) 与机器学习算法的集成加速了与生物修复相关的新基因的发现过程,并优化了代谢途径预测。包括测序技术和 AI 辅助分析在内的新策略有可能通过为各种污染环境开发高效、有针对性和可持续的修复策略来彻底改变生物修复。然而,这些先进技术的微生物相互作用的复杂性、数据解释和高成本仍然具有挑战性。未来的研究应侧重于改进计算工具、降低成本和整合多学科方法以克服这些限制。
更新日期:2024-11-16
中文翻译:
环境污染物生物修复的宏基因组学方法
宏基因组学已成为生物修复的关键工具,可以更深入地了解参与污染物降解的微生物群落的结构和功能。通过规避传统基于培养的方法的局限性,宏基因组学能够对微生物生态系统进行全面分析,并有助于识别对生物修复至关重要的新基因和代谢途径。先进的测序技术与计算和生物信息学方法相结合,大大增强了我们在生物修复过程中检测污染源和监测微生物群落动态变化的能力。这些工具能够精确识别关键微生物参与者及其功能作用,并更深入地了解复杂的生物降解网络。人工智能 (AI) 与机器学习算法的集成加速了与生物修复相关的新基因的发现过程,并优化了代谢途径预测。包括测序技术和 AI 辅助分析在内的新策略有可能通过为各种污染环境开发高效、有针对性和可持续的修复策略来彻底改变生物修复。然而,这些先进技术的微生物相互作用的复杂性、数据解释和高成本仍然具有挑战性。未来的研究应侧重于改进计算工具、降低成本和整合多学科方法以克服这些限制。