Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Unusually high selectivity (100 %) of photocatalytic C[sbnd]C coupling achieved by instant reverse reduction of byproducts
Journal of Catalysis ( IF 6.5 ) Pub Date : 2024-11-12 , DOI: 10.1016/j.jcat.2024.115842 Tianhan Shen, Qipeng Chen, Yue Gao, Zuofei Gu, Huiqing Zhang, Fengyan Shi, Guohua Liu, Yuning Huo, Hexing Li
Journal of Catalysis ( IF 6.5 ) Pub Date : 2024-11-12 , DOI: 10.1016/j.jcat.2024.115842 Tianhan Shen, Qipeng Chen, Yue Gao, Zuofei Gu, Huiqing Zhang, Fengyan Shi, Guohua Liu, Yuning Huo, Hexing Li
The photocatalytic C C coupling of benzyl alcohol (BA) into hydrobenzoin (HB), is appealing to obtain high-value chemicals. However, the selectivity of HB is still low due to the inevitable formation of benzaldehyde. Herein, we report In(OH)3 -ZnS photocatalyst for C C coupling of BA into HB with very high selectivity (∼100 %). The introduction of In(OH)3 onto ZnS with stable interaction facilitates light harvesting and separation of photo-excited charges. As a result, BA conversion on optimized In(0.1)-ZnS catalyst (73 %) is much higher than ZnS (29 %). Besides, the surface hydroxyl groups derived from In(OH)3 enables the facile desorption of CH(OH)Ph radical. Therefore, the over oxidation of CH(OH)Ph radical into by-product of benzaldehyde can be effectively inhibited. More significantly, in-situ FTIR spectra and reduction of by-product manifest the instant reverse reduction process of benzaldehyde into CH(OH)Ph radical during C C coupling of BA, which is the key to realizing satisfied HB selectivity (100 %). Theoretical simulations reveal that the weak adsorption of CH(OH)Ph radical over catalyst and the high energy barrier of over-oxidation of CH(OH)Ph into benzaldehyde contributes to the formation of highly selective coupling products. This work will inspire new insights to design rational photoredox systems for organic transformations with high selectivity.
中文翻译:
通过即时反向还原副产物实现光催化 C[sbnd]C 偶联的异常高选择性 (100%)
苯甲醇 (BA) 与氢安息香 (HB) 的光催化 CC 偶联,对于获得高价值化学品具有吸引力。然而,由于不可避免地会形成苯甲醛,HB 的选择性仍然很低。在此,我们报道了 In(OH)3-ZnS 光催化剂,用于 BA 与 HB 的 CC 偶联,具有非常高的选择性 (∼100 %)。将 In(OH)3 引入 ZnS 上并具有稳定的相互作用,有助于光的收集和光激发电荷的分离。因此,优化的 In(0.1)-ZnS 催化剂的 BA 转化率 (73 %) 远高于 ZnS (29 %)。此外,In(OH)3 衍生的表面羟基能够轻松解吸 CH(OH)Ph 自由基。因此,可以有效抑制 CH(OH)Ph 自由基过度氧化成苯甲醛副产物。更重要的是,原位 FTIR 光谱和副产物的还原表明,在 BA 的 CC 偶联过程中,苯甲醛即时逆还原为 CH(OH)Ph 自由基,这是实现满意的 HB 选择性 (100%) 的关键。理论模拟表明,CH(OH)Ph 自由基对催化剂的弱吸附和 CH(OH)Ph 过度氧化成苯甲醛的高能垒有助于形成高选择性偶联产物。这项工作将激发新的见解,以设计合理的光氧化还原系统,以实现具有高选择性的有机转化。
更新日期:2024-11-12
中文翻译:
通过即时反向还原副产物实现光催化 C[sbnd]C 偶联的异常高选择性 (100%)
苯甲醇 (BA) 与氢安息香 (HB) 的光催化 CC 偶联,对于获得高价值化学品具有吸引力。然而,由于不可避免地会形成苯甲醛,HB 的选择性仍然很低。在此,我们报道了 In(OH)3-ZnS 光催化剂,用于 BA 与 HB 的 CC 偶联,具有非常高的选择性 (∼100 %)。将 In(OH)3 引入 ZnS 上并具有稳定的相互作用,有助于光的收集和光激发电荷的分离。因此,优化的 In(0.1)-ZnS 催化剂的 BA 转化率 (73 %) 远高于 ZnS (29 %)。此外,In(OH)3 衍生的表面羟基能够轻松解吸 CH(OH)Ph 自由基。因此,可以有效抑制 CH(OH)Ph 自由基过度氧化成苯甲醛副产物。更重要的是,原位 FTIR 光谱和副产物的还原表明,在 BA 的 CC 偶联过程中,苯甲醛即时逆还原为 CH(OH)Ph 自由基,这是实现满意的 HB 选择性 (100%) 的关键。理论模拟表明,CH(OH)Ph 自由基对催化剂的弱吸附和 CH(OH)Ph 过度氧化成苯甲醛的高能垒有助于形成高选择性偶联产物。这项工作将激发新的见解,以设计合理的光氧化还原系统,以实现具有高选择性的有机转化。