当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational Screening of Asymmetric Dual Sites by Bader Charge Variation Facilitates C–C Coupling for CO2 Photoreduction to C2H4
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2024-11-12 , DOI: 10.1021/acssuschemeng.4c07482
Qian Zhu, Zhiyu Shao, Xinyue Wang, Shaohua Wang, Xiangyan Hou, Na Liang, Jingyu Shi, Xiaotian Wu, Xiaofeng Wu, Chao Wang, Keke Huang, Shouhua Feng

Constructing asymmetric dual active sites is an effective strategy to promote formation of the C2 product in photocatalytic CO2 reactions, attributed to the suppressed dipole–dipole repulsion facilitating C–C coupling. However, information about the extent of asymmetry is still absent, making the precise design of asymmetric sites a challenge. Herein, Bader charge variation (Δq) in intermetallics was chosen as the descriptor to select asymmetric sites, where a linear relation between Δq and the adsorption energy of the C2 intermediate is found. From 66 intermetallic candidates, FePt stood out, with Δq = 0.503 e, and is predicted to be a promising asymmetric candidate. Experimentally, FePt intermetallic nanoparticles were synthesized and loaded onto the photocatalytic substrate TiO2 (denoted as FePt/TiO2), and CoPt and NiPt were also synthesized as reference samples. X-ray photoelectron spectroscopy and X-ray absorption spectroscopy results reveal the electron enrichment on Pt and depletion on Fe, and DFT calculations uncover that the asymmetric electron distribution on the FePt intermetallic strengthened the CO2 intermediate’s adsorption and C–C coupling, reducing the free energy barrier to 0.68 eV. As a result, FePt/TiO2 showed efficient production of C2H4 (4.8 μmol g–1 h–1) in the absence of photosensitizers and scavengers, higher than the amounts obtained with CoPt/TiO2, NiPt/TiO2, and TiO2 (2.1, 1.5, and 0 μmol g–1 h–1, respectively). This study offers insights into the design criteria of asymmetric sites to motivate CO2 photoreduction.

中文翻译:


通过 Bader 电荷变化对不对称双位点进行计算筛选有助于 CO2 光还原为 C2H4 的 C-C 耦合



构建不对称的双活性位点是在光催化 CO2 反应中促进 C2 产物形成的有效策略,这归因于抑制的偶极-偶极排斥促进 C-C 耦合。然而,关于不对称程度的信息仍然缺失,这使得不对称位点的精确设计成为一个挑战。在此,选择金属间化合物中的 Bader 电荷变化 (Δq) 作为选择不对称位点的描述符,其中发现 Δq 与 C2 中间体的吸附能之间存在线性关系。从 66 种金属间化合物候选物中,FePt 脱颖而出,Δq = 0.503 e,预计是一种很有前途的不对称候选物。实验合成了 FePt 金属间化合物纳米颗粒并将其负载到光催化底物 TiO2 (表示为 FePt/TiO2) 上,还合成了 CoPt 和 NiPt 作为参考样品。X 射线光电子能谱和 X 射线吸收光谱结果揭示了 Pt 上的电子富集和 Fe 上的消耗,DFT 计算揭示了 FePt 金属间化合物上的不对称电子分布加强了 CO2 中间体的吸附和 C-C 耦合,将自由能势垒降低到 0.68 eV。结果,在没有光敏剂和清除剂的情况下,FePt/TiO2 显示出 C2H4 (4.8 μmol g–1 h–1) 的高效产生,高于使用 CoPt/TiO2、NiPt/TiO2 和 TiO2 获得的量(分别为 2.1、1.5 和 0 μmol g–1 h–1)。 本研究为不对称位点的设计标准提供了见解,以激励 CO2 光还原。
更新日期:2024-11-13
down
wechat
bug