当前位置:
X-MOL 学术
›
Philosophia Mathematica
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Predicative Classes and Strict Potentialism
Philosophia Mathematica ( IF 0.8 ) Pub Date : 2024-11-12 , DOI: 10.1093/philmat/nkae020 Øystein Linnebo, Stewart Shapiro
Philosophia Mathematica ( IF 0.8 ) Pub Date : 2024-11-12 , DOI: 10.1093/philmat/nkae020 Øystein Linnebo, Stewart Shapiro
While sets are combinatorial collections, defined by their elements, classes are logical collections, defined by their membership conditions. We develop, in a potentialist setting, a predicative approach to (logical) classes of (combinatorial) sets. Some reasons emerge to adopt a stricter form of potentialism, which insists, not only that each object is generated at some stage of an incompletable process, but also that each truth is “made true” at some such stage. The natural logic of this strict form of potentialism is semi-intuitionistic: where each set-sized domain is classical, the domain of all sets or all classes is intuitionistic.
中文翻译:
谓词类和严格势能主义
集是由其元素定义的组合集合,而类是由其成员资格条件定义的逻辑集合。在潜在主义的环境中,我们开发了一种预测方法来处理(逻辑)集合的(逻辑)类。一些理由出现了采用更严格形式的潜在主义,它坚持认为,不仅每个对象都是在一个无法完成的过程的某个阶段产生的,而且每个真理都是在某个这样的阶段“成为真实的”。这种严格形式的潜在主义的自然逻辑是半直觉主义的:每个集合大小的域都是经典的,所有集合或所有类的域都是直觉的。
更新日期:2024-11-12
中文翻译:
谓词类和严格势能主义
集是由其元素定义的组合集合,而类是由其成员资格条件定义的逻辑集合。在潜在主义的环境中,我们开发了一种预测方法来处理(逻辑)集合的(逻辑)类。一些理由出现了采用更严格形式的潜在主义,它坚持认为,不仅每个对象都是在一个无法完成的过程的某个阶段产生的,而且每个真理都是在某个这样的阶段“成为真实的”。这种严格形式的潜在主义的自然逻辑是半直觉主义的:每个集合大小的域都是经典的,所有集合或所有类的域都是直觉的。