当前位置:
X-MOL 学术
›
Phys. Chem. Chem. Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
An annealing approach to form a nanotube from graphdiyne ribbon: a theoretical prediction
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2024-11-12 , DOI: 10.1039/d4cp03573a Bo Song, Kun Cai, Jiao Shi, Qing-Hua Qin
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2024-11-12 , DOI: 10.1039/d4cp03573a Bo Song, Kun Cai, Jiao Shi, Qing-Hua Qin
A precisely controllable heat treatment process is critical for nanofabrication. We developed a two-step method to fabricate a graphdiyne nanotube (GNT) through heat treatment in an argon environment. Initially, we placed a carbon nanotube (CNT) near a rectangular graphdiyne nanoribbon (GNR) to trigger the self-scrolling of the ribbon. Once the ribbon forms a scroll, we increased the ambient temperature to induce the formation of interlayer covalent C–C bonds within the scroll, ultimately resulting in a GNT after system annealing. The self-scrolling process of the GNR, protected by argon gas, is highly sensitive to ambient temperature. Molecular dynamics simulations show that self-scrolling can be controlled by adjusting the gas density and/or ambient temperature. In summary, a controlled heating process starting from an ultralow temperature initiates the self-scrolling of a GNR onto a CNT, followed by the generation of covalent bonds within the GNR at higher temperatures. Since the new covalent bond topology remains stable even after cooling, a stable GNT is obtained. The size of the pores on the GNT shell depends on the number of newly formed bonds. These insights will enhance the fabrication and application of GNTs as nanofilters.
中文翻译:
一种从 graphdiyne 带形成纳米管的退火方法:理论预测
精确可控的热处理工艺对于纳米制造至关重要。我们开发了一种两步法,通过在氩环境中的热处理来制造石墨炔纳米管 (GNT)。最初,我们在矩形石墨炔纳米带 (GNR) 附近放置了一个碳纳米管 (CNT),以触发带的自滚动。一旦带状物形成螺旋状物,我们就提高环境温度以诱导在物状物状物中形成层间共价 C-C 键,最终在系统退火后产生 GNT。GNR 的自滚动过程受氩气保护,对环境温度高度敏感。分子动力学模拟表明,可以通过调整气体密度和/或环境温度来控制自滚动。总之,从超低温开始的受控加热过程开始 GNR 在 CNT 上自滚动,然后在较高温度下在 GNR 内产生共价键。由于新的共价键拓扑结构即使在冷却后仍保持稳定,因此获得了稳定的 GNT。GNT 壳上孔的大小取决于新形成的键的数量。这些见解将加强 GNT 作为纳米过滤器的制造和应用。
更新日期:2024-11-12
中文翻译:
一种从 graphdiyne 带形成纳米管的退火方法:理论预测
精确可控的热处理工艺对于纳米制造至关重要。我们开发了一种两步法,通过在氩环境中的热处理来制造石墨炔纳米管 (GNT)。最初,我们在矩形石墨炔纳米带 (GNR) 附近放置了一个碳纳米管 (CNT),以触发带的自滚动。一旦带状物形成螺旋状物,我们就提高环境温度以诱导在物状物状物中形成层间共价 C-C 键,最终在系统退火后产生 GNT。GNR 的自滚动过程受氩气保护,对环境温度高度敏感。分子动力学模拟表明,可以通过调整气体密度和/或环境温度来控制自滚动。总之,从超低温开始的受控加热过程开始 GNR 在 CNT 上自滚动,然后在较高温度下在 GNR 内产生共价键。由于新的共价键拓扑结构即使在冷却后仍保持稳定,因此获得了稳定的 GNT。GNT 壳上孔的大小取决于新形成的键的数量。这些见解将加强 GNT 作为纳米过滤器的制造和应用。