当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Salt dissociation and localized high-concentration solvation at the interface of a fluorinated gel and polymer solid electrolyte
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-11-12 , DOI: 10.1039/d4ee04078c Dechao Zhang, Yuxuan Liu, Dedi Li, Shimei Li, Qi Xiong, Zhaodong Huang, Shixun Wang, Hu Hong, Jiaxiong Zhu, Haiming Lv, Chunyi Zhi
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-11-12 , DOI: 10.1039/d4ee04078c Dechao Zhang, Yuxuan Liu, Dedi Li, Shimei Li, Qi Xiong, Zhaodong Huang, Shixun Wang, Hu Hong, Jiaxiong Zhu, Haiming Lv, Chunyi Zhi
Low salt dissociation and the unstable [Li(N,N-dimethylformamide (DMF))x]+ solvent structure in poly(vinylidene fluoride) (PVDF)-based solid polymer electrolyte (SPE) remarkably restricts the high throughput ion transport and interfacial stability. Here, we designed a hybrid electrolyte (denoted as HFGP-SE) composed of fluorinated gel solid electrolyte (FG-SE) and poly(vinylidene fluoride-co-hexafluoropropylene) (PVHF)-based solid polymer electrolyte (PVHF-SPE). We found that in the HFGP-SE, the interface of FG-SE and PVHF-SPE effectively promotes lithium salt dissociation and creates a localized high-concentration (LHC) solvation structure. The developed HFGP-SE shows high ionic conductivity (0.84 mS cm−1) and a remarkably improved lithium transference number (tLi+ = 0.87). Meanwhile, the controlled LHC solvation structure formed at the interface between FG-SE and PVHF-SPE supports the formation of inorganic-rich solid electrolyte interphases (SEIs) derived from anions, allowing for stable lithium deposition and ultra-stable plating/stripping performance for over 1200 hours at a current density of 0.5 mA cm−2. Additionally, HFGP-SE supported stable cycling in 4.5 V class Li||NCM811 full cells under practical conditions, with a 50 μm thick lithium metal anode and cathodes with a mass loading of 12 mg cm−2, achieving an areal capacity >2 mA h cm−2. This work proposes a novel strategy using interfaces existing in hybrid solid electrolytes to significantly enhance lithium salt dissociation, fast ion transport, and interfacial stability of solid-state electrolytes for lithium metal batteries.
中文翻译:
氟化凝胶和聚合物固体电解质界面处的盐解离和局部高浓度溶剂化
在基于聚偏二氟乙烯 (PVDF) 的固体聚合物电解质 (SPE) 中,低盐解离和不稳定的 [Li(N,N-二甲基甲酰胺 (DMF))x]+ 溶剂结构显著限制了高通量离子传输和界面稳定性。在这里,我们设计了一种由氟化凝胶固体电解质 (FG-SE) 和聚(偏二氟乙烯-共六氟丙烯) (PVHF) 基固体聚合物电解质 (PVHF-SPE) 组成的混合电解质(表示为 HFGP-SE)。我们发现,在 HFGP-SE 中,FG-SE 和 PVHF-SPE 的界面有效地促进了锂盐的解离,并产生了局部高浓度 (LHC) 溶剂化结构。开发的 HFGP-SE 显示出高离子电导率 (0.84 mS cm-1) 和显着改善的锂转移数 (tLi+ = 0.87)。同时,在 FG-SE 和 PVHF-SPE 界面处形成的受控 LHC 溶剂化结构支持形成源自阴离子的富含无机物的固体电解质界面 (SEI),从而在 0.5 mA cm-2 的电流密度下实现超过 1200 小时的稳定锂沉积和超稳定的电镀/剥离性能.此外,HFGP-SE 还支持 4.5 V 级 Li||NCM811 全电池在实际条件下,具有 50 μm 厚的锂金属阳极和阴极,质量负载为 12 mg cm-2,达到面容量 >2 mA h cm-2。 这项工作提出了一种新的策略,利用混合固体电解质中存在的界面来显着增强锂盐解离、快速离子传输和锂金属电池固态电解质的界面稳定性。
更新日期:2024-11-12
中文翻译:
氟化凝胶和聚合物固体电解质界面处的盐解离和局部高浓度溶剂化
在基于聚偏二氟乙烯 (PVDF) 的固体聚合物电解质 (SPE) 中,低盐解离和不稳定的 [Li(N,N-二甲基甲酰胺 (DMF))x]+ 溶剂结构显著限制了高通量离子传输和界面稳定性。在这里,我们设计了一种由氟化凝胶固体电解质 (FG-SE) 和聚(偏二氟乙烯-共六氟丙烯) (PVHF) 基固体聚合物电解质 (PVHF-SPE) 组成的混合电解质(表示为 HFGP-SE)。我们发现,在 HFGP-SE 中,FG-SE 和 PVHF-SPE 的界面有效地促进了锂盐的解离,并产生了局部高浓度 (LHC) 溶剂化结构。开发的 HFGP-SE 显示出高离子电导率 (0.84 mS cm-1) 和显着改善的锂转移数 (tLi+ = 0.87)。同时,在 FG-SE 和 PVHF-SPE 界面处形成的受控 LHC 溶剂化结构支持形成源自阴离子的富含无机物的固体电解质界面 (SEI),从而在 0.5 mA cm-2 的电流密度下实现超过 1200 小时的稳定锂沉积和超稳定的电镀/剥离性能.此外,HFGP-SE 还支持 4.5 V 级 Li||NCM811 全电池在实际条件下,具有 50 μm 厚的锂金属阳极和阴极,质量负载为 12 mg cm-2,达到面容量 >2 mA h cm-2。 这项工作提出了一种新的策略,利用混合固体电解质中存在的界面来显着增强锂盐解离、快速离子传输和锂金属电池固态电解质的界面稳定性。