当前位置: X-MOL 学术ACS Macro Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational Phase Discovery in Block Polymers
ACS Macro Letters ( IF 5.1 ) Pub Date : 2024-11-12 , DOI: 10.1021/acsmacrolett.4c00661
Kevin D. Dorfman

Self-consistent field theory (SCFT), the mean-field theory of polymer thermodynamics, is a powerful tool for understanding ordered state selection in block copolymer melts and blends. However, the nonlinear governing equations pose a significant challenge when SCFT is used for phase discovery because converging an SCFT solution typically requires an initial guess close to the self-consistent solution. This Viewpoint provides a concise overview of recent efforts where machine learning methods (particle swarm optimization, Bayesian optimization, and generative adversarial networks) have been used to make the first strides toward converting SCFT from a primarily explanatory tool into one that can be readily deployed for phase discovery.

中文翻译:


嵌段聚合物中的计算相发现



自洽场论 (SCFT) 是聚合物热力学的平均场理论,是理解嵌段共聚物熔体和共混物中有序状态选择的强大工具。然而,当 SCFT 用于相位发现时,非线性控制方程带来了重大挑战,因为收敛 SCFT 解通常需要接近自洽解的初始估计值。本观点简要概述了机器学习方法(粒子群优化、贝叶斯优化和生成对抗网络)的最新工作,这些工作已用于将 SCFT 从主要解释性工具转变为可以轻松部署用于相位发现的工具。
更新日期:2024-11-12
down
wechat
bug