当前位置:
X-MOL 学术
›
Found. Comput. Math.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Computing the Noncommutative Inner Rank by Means of Operator-Valued Free Probability Theory
Foundations of Computational Mathematics ( IF 2.5 ) Pub Date : 2024-11-11 , DOI: 10.1007/s10208-024-09684-5 Johannes Hoffmann, Tobias Mai, Roland Speicher
中文翻译:
通过算子值自由概率论计算非交换内秩
更新日期:2024-11-12
Foundations of Computational Mathematics ( IF 2.5 ) Pub Date : 2024-11-11 , DOI: 10.1007/s10208-024-09684-5 Johannes Hoffmann, Tobias Mai, Roland Speicher
We address the noncommutative version of the Edmonds’ problem, which asks to determine the inner rank of a matrix in noncommuting variables. We provide an algorithm for the calculation of this inner rank by relating the problem with the distribution of a basic object in free probability theory, namely operator-valued semicircular elements. We have to solve a matrix-valued quadratic equation, for which we provide precise analytical and numerical control on the fixed point algorithm for solving the equation. Numerical examples show the efficiency of the algorithm.
中文翻译:
通过算子值自由概率论计算非交换内秩
我们解决了 Edmonds 问题的非交换版本,它要求确定矩阵在非交换变量中的内部秩。我们提供了一种算法来计算这个内部秩,方法是将问题与自由概率论中基本对象的分布联系起来,即算子值半圆元素。我们必须求解一个矩阵值二次方程,为此,我们对求解方程的定点算法提供精确的分析和数控。数值示例显示了算法的效率。