当前位置:
X-MOL 学术
›
Crit. Care
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Predictors of weaning failure in ventilated intensive care patients: a systematic evidence map
Critical Care ( IF 8.8 ) Pub Date : 2024-11-12 , DOI: 10.1186/s13054-024-05135-3 Fritz Sterr, Michael Reintke, Lydia Bauernfeind, Volkan Senyol, Christian Rester, Sabine Metzing, Rebecca Palm
Critical Care ( IF 8.8 ) Pub Date : 2024-11-12 , DOI: 10.1186/s13054-024-05135-3 Fritz Sterr, Michael Reintke, Lydia Bauernfeind, Volkan Senyol, Christian Rester, Sabine Metzing, Rebecca Palm
Ventilator weaning is of great importance for intensive care patients in order to avoid complications caused by prolonged ventilation. However, not all patients succeed in weaning immediately. Their spontaneous breathing may be insufficient, resulting in extubation failure and the subsequent need for reintubation. To identify patients at high risk for weaning failure, a variety of potential predictors has already been examined in individual studies and meta-analyses over the last decades. However, an overview of all the predictors investigated is missing. To provide an overview of empirically investigated predictors for weaning failure. A systematic evidence map was developed. To this end, we conducted a systematic search in the Medline, Cochrane, and CINAHL databases in December 2023 and added a citation search and a manual search in June 2024. Studies on predictors for weaning failure in adults ventilated in the intensive care unit were included. Studies on children, outpatients, non-invasive ventilation, or explanatory factors of weaning failure were excluded. Two reviewers performed the screening and data extraction independently. Data synthesis followed an inductive approach in which the predictors were thematically analyzed, sorted, and clustered. Of the 1388 records obtained, 140 studies were included in the analysis. The 112 prospective and 28 retrospective studies investigated a total of 145 predictors. These were assigned to the four central clusters ‘Imaging procedures’ (n = 22), ‘Physiological parameters’ (n = 61), ‘Scores and indices’ (n = 53), and ‘Machine learning models’ (n = 9). The most frequently investigated predictors are the rapid shallow breathing index, the diaphragm thickening fraction, the respiratory rate, the P/F ratio, and the diaphragm excursion. Predictors for weaning failure are widely researched. To date, 145 predictors have been investigated with varying intensity in 140 studies that are in line with the current weaning definition. It is no longer just individual predictors that are investigated, but more comprehensive assessments, indices and machine learning models in the last decade. Future research should be conducted in line with international weaning definitions and further investigate poorly researched predictors. Registration, Protocol: https://doi.org/10.17605/OSF.IO/2KDYU
中文翻译:
通气重症监护患者脱机失败的预测因子:系统证据图
呼吸机脱机对于重症监护患者非常重要,以避免因长时间通气而引起的并发症。然而,并非所有患者都能立即成功脱机。他们的自主呼吸可能不足,导致拔管失败,随后需要重新插管。为了识别脱机失败风险高的患者,过去几十年来,已经在个别研究和荟萃分析中检查了各种潜在的预测因素。但是,缺少所有调查的预测变量的概述。提供脱机失败的实证研究预测因子的概述。开发了系统的证据图。为此,我们于 2023 年 12 月在 Medline、Cochrane 和 CINAHL 数据库中进行了系统检索,并于 2024 年 6 月增加了引文检索和手动检索。纳入了关于重症监护病房通气成人脱机失败预测因素的研究。排除了对儿童、门诊、无创通气或脱机失败解释因素的研究。两名评价员独立进行筛选和数据提取。数据合成遵循归纳方法,其中预测因子按主题进行分析、排序和聚类。在获得的 1388 条记录中,包括 140 项研究。112 项前瞻性研究和 28 项回顾性研究共调查了 145 个预测因子。这些被分配到四个中心集群“成像程序”(n = 22)、“生理参数”(n = 61)、“分数和指数”(n = 53)和“机器学习模型”(n = 9)。 最常研究的预测因素是快速浅呼吸指数、膈肌增厚分数、呼吸频率、P/F 比值和膈肌偏移。脱机失败的预测因子被广泛研究。迄今为止,已在 140 项研究中以不同强度调查了 145 个预测因子,这些预测因子与当前的脱机定义一致。研究的不再只是单个预测因子,而是过去十年中更全面的评估、指数和机器学习模型。未来的研究应根据国际脱机定义进行,并进一步调查研究不足的预测因素。注册、协议:https://doi.org/10.17605/OSF。IO/2KDYU
更新日期:2024-11-12
中文翻译:
通气重症监护患者脱机失败的预测因子:系统证据图
呼吸机脱机对于重症监护患者非常重要,以避免因长时间通气而引起的并发症。然而,并非所有患者都能立即成功脱机。他们的自主呼吸可能不足,导致拔管失败,随后需要重新插管。为了识别脱机失败风险高的患者,过去几十年来,已经在个别研究和荟萃分析中检查了各种潜在的预测因素。但是,缺少所有调查的预测变量的概述。提供脱机失败的实证研究预测因子的概述。开发了系统的证据图。为此,我们于 2023 年 12 月在 Medline、Cochrane 和 CINAHL 数据库中进行了系统检索,并于 2024 年 6 月增加了引文检索和手动检索。纳入了关于重症监护病房通气成人脱机失败预测因素的研究。排除了对儿童、门诊、无创通气或脱机失败解释因素的研究。两名评价员独立进行筛选和数据提取。数据合成遵循归纳方法,其中预测因子按主题进行分析、排序和聚类。在获得的 1388 条记录中,包括 140 项研究。112 项前瞻性研究和 28 项回顾性研究共调查了 145 个预测因子。这些被分配到四个中心集群“成像程序”(n = 22)、“生理参数”(n = 61)、“分数和指数”(n = 53)和“机器学习模型”(n = 9)。 最常研究的预测因素是快速浅呼吸指数、膈肌增厚分数、呼吸频率、P/F 比值和膈肌偏移。脱机失败的预测因子被广泛研究。迄今为止,已在 140 项研究中以不同强度调查了 145 个预测因子,这些预测因子与当前的脱机定义一致。研究的不再只是单个预测因子,而是过去十年中更全面的评估、指数和机器学习模型。未来的研究应根据国际脱机定义进行,并进一步调查研究不足的预测因素。注册、协议:https://doi.org/10.17605/OSF。IO/2KDYU