当前位置: X-MOL 学术International Studies Quarterly › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Inference with Extremes: Accounting for Extreme Values in Count Regression Models
International Studies Quarterly ( IF 2.4 ) Pub Date : 2024-11-11 , DOI: 10.1093/isq/sqae137
David Randahl, Johan Vegelius

Processes that occasionally, but not always, produce extreme values are notoriously difficult to model, as a small number of extreme observations may have a large impact on the results. Existing methods for handling extreme values are often arbitrary and leave researchers without guidance regarding this problem. In this paper, we propose an extreme value and zero-inflated negative binomial (EVZINB) regression model, which allows for separate modeling of extreme and nonextreme observations to solve this problem. The EVZINB model offers an elegant solution to modeling data with extreme values and allows researchers to draw additional inferences about both extreme and nonextreme observations. We illustrate the usefulness of the EVZINB model by replicating a study on the effects of the deployment of UN peacekeepers on one-sided violence against civilians.

中文翻译:


使用极值进行推理:在计数回归模型中考虑极值



众所周知,偶尔(但并非总是)产生极值的过程很难建模,因为少量的极值观测可能会对结果产生很大影响。处理极值的现有方法通常是任意的,使研究人员无法获得有关此问题的指导。在本文中,我们提出了一个极值和零膨胀的负二项式 (EVZINB) 回归模型,该模型允许对极值和非极值观测值进行单独建模来解决这个问题。EVZINB 模型为使用极值对数据进行建模提供了一种优雅的解决方案,并允许研究人员对极端和非极端观测得出额外的推断。我们通过复制一项关于部署联合国维和人员对针对平民的单方面暴力影响的研究来说明 EVZINB 模型的有用性。
更新日期:2024-11-11
down
wechat
bug