当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Rational Design of Two Well‐Compatible Dimeric Acceptors Through Regulating Chalcogen‐Substituted Conjugated Backbone Enable Ternary Organic Solar Cells with 19.4% Efficiency
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-11-12 , DOI: 10.1002/aenm.202404062 Wanying Feng, Yuyang Bai, Jia Wang, Yanyi Zhong, Jiaying Wang, Tianqi Chen, Jiangbin Zhang, Kai Han, Xiangjian Wan, Bin Kan, Yongsheng Chen
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-11-12 , DOI: 10.1002/aenm.202404062 Wanying Feng, Yuyang Bai, Jia Wang, Yanyi Zhong, Jiaying Wang, Tianqi Chen, Jiangbin Zhang, Kai Han, Xiangjian Wan, Bin Kan, Yongsheng Chen
To enhance the performance of dimeric acceptors (DMAs) based organic solar cells (OSCs), two new DMAs, designated as DC9‐HD and DYSe‐3, are rationally developed and employed to fabricate ternary OSCs. The substitution of the sulfur atom on the outer ring of the fused‐ring core of DC9‐HD with a selenium atom resultes in the red‐shifted DYSe‐3. Despite these minor differences, DC9‐HD and DYSe‐3 possess nearly identical conjugated skeletons, which contribute to their similar packing motifs and crystallinities, ultimately enabling a high degree of miscibility between two DMAs. Upon incorporating DYSe‐3 into the host PM6:DC9‐HD binary blend, fibril‐like morphologies featured with diameters of ≈16.9 nm and reduced charge recombination are observed in the PM6:DC9‐HD:DYSe‐3 ternary blend. More importantly, owing to their long exciton diffusion lengths and low voltage losses, a remarkable power conversion efficiency of 19.4% is achieved for the ternary OSCs, alongside a delicate balance between open‐circuit voltage and short‐circuit current density. This super result is comparable to the best performance of oligomer acceptor based OSCs reported to date. Furthermore, the proposed ternary strategy, which combines one polymer donor and two well‐compatible DMAs, not only retains the advantages of DMAs but also offers a streamlined approach for fabricating high‐performance ternary OSCs.
中文翻译:
通过调节硫属取代的共轭骨架合理设计两个相容良好的二聚体受体,使三元有机太阳能电池的效率达到 19.4%
为了提高基于二聚体受体 (DMA) 的有机太阳能电池 (OSC) 的性能,合理开发了两种新的 DMA,命名为 DC9-HD 和 DYSe-3,用于制造三元 OSC。DC9-HD 的熔环核外环上的硫原子被硒原子取代,导致红移 DYSe-3。尽管存在这些微小的差异,但 DC9-HD 和 DYSe-3 具有几乎相同的共轭骨架,这有助于它们具有相似的堆积基序和结晶度,最终使两个 DMA 之间高度混溶。将 DYSe-3 掺入宿主 PM6:DC9-HD 二元共混物中后,在 PM6:DC9-HD:DYSe-3 三元共混物中观察到直径为 ≈16.9 nm 且电荷复合减少的原纤维状形态。更重要的是,由于激子扩散长度长和电压损耗低,三元 OSC 实现了 19.4% 的显着功率转换效率,同时在开路电压和短路电流密度之间实现了微妙的平衡。这一超级结果与迄今为止报道的基于寡聚体受体的 OSC 的最佳性能相当。此外,所提出的三元策略结合了一个聚合物供体和两个相容良好的 DMA,不仅保留了 DMA 的优势,而且还为制造高性能三元 OSC 提供了一种简化的方法。
更新日期:2024-11-12
中文翻译:
通过调节硫属取代的共轭骨架合理设计两个相容良好的二聚体受体,使三元有机太阳能电池的效率达到 19.4%
为了提高基于二聚体受体 (DMA) 的有机太阳能电池 (OSC) 的性能,合理开发了两种新的 DMA,命名为 DC9-HD 和 DYSe-3,用于制造三元 OSC。DC9-HD 的熔环核外环上的硫原子被硒原子取代,导致红移 DYSe-3。尽管存在这些微小的差异,但 DC9-HD 和 DYSe-3 具有几乎相同的共轭骨架,这有助于它们具有相似的堆积基序和结晶度,最终使两个 DMA 之间高度混溶。将 DYSe-3 掺入宿主 PM6:DC9-HD 二元共混物中后,在 PM6:DC9-HD:DYSe-3 三元共混物中观察到直径为 ≈16.9 nm 且电荷复合减少的原纤维状形态。更重要的是,由于激子扩散长度长和电压损耗低,三元 OSC 实现了 19.4% 的显着功率转换效率,同时在开路电压和短路电流密度之间实现了微妙的平衡。这一超级结果与迄今为止报道的基于寡聚体受体的 OSC 的最佳性能相当。此外,所提出的三元策略结合了一个聚合物供体和两个相容良好的 DMA,不仅保留了 DMA 的优势,而且还为制造高性能三元 OSC 提供了一种简化的方法。