当前位置:
X-MOL 学术
›
Laser Photonics Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Suppressing the Dark Current Under Forward Bias for Dual‐Mode Organic Photodiodes
Laser & Photonics Reviews ( IF 9.8 ) Pub Date : 2024-11-11 , DOI: 10.1002/lpor.202400920 Jianhua Xiao, Yang Wang, Jiaao Wu, Liu Yuan, Huiling Tai, Yadong Jiang
Laser & Photonics Reviews ( IF 9.8 ) Pub Date : 2024-11-11 , DOI: 10.1002/lpor.202400920 Jianhua Xiao, Yang Wang, Jiaao Wu, Liu Yuan, Huiling Tai, Yadong Jiang
Tremendous research efforts are developed to suppress the reverse dark current (Jd ) and enhance the responsivity of organic photodiodes (OPDs). The functional layers of traditional OPDs usually follow the principle of energy level alignment to make unobstructed photo‐carriers transport under reverse bias, but this inevitably leads to a large forward Jd . Herein, a universal strategy is proposed to manipulate the carrier dynamics and effectively suppress the forward Jd of OPDs, that is, tuning the energy level and electron traps of the anode interface layers (AILs). The bandgap and electron traps of typical organometallic chelate AIL (PEIE‐Co) can be well controlled by adjusting the component ratio of PEIE and metal ions. The wide bandgap increases the carrier injection barrier under reverse and forward bias, endowing OPD with a much lower Jd ; the electron traps induce hole tunneling injection by capturing photo‐generated electrons under forward bias, thereby enabling the photomultiplication effect. The obtained OPD exhibits photoconductive/photomultiplication working mode at reverse/forward bias and the specific detectivity approaches ≈1013 /1012 Jones, showing promise for adaptively detecting faint and strong light. This study presents an intelligent strategy to achieve dual‐mode OPDs, paving the way for the multifunctional development of photodetectors.
中文翻译:
双模有机光电二极管正向偏压下的暗电流抑制
为了抑制反向暗电流 (Jd) 并提高有机光电二极管 (OPD) 的响应性,人们开展了大量研究工作。传统 OPD 的功能层通常遵循能级对齐的原理,在反向偏置下使光载流子传输畅通无阻,但这不可避免地导致了较大的正向 Jd。在此,提出了一种通用策略来操纵 OPD 的载流子动力学并有效抑制 OPD 的正向 Jd,即调整阳极界面层 (AIL) 的能级和电子陷阱。通过调整 PEIE 和金属离子的组分比例,可以很好地控制典型有机金属螯合物 AIL (PEIE-Co) 的带隙和电子陷阱。宽禁带增加了反向和正向偏置下的载流子注入势垒,使 OPD 的 Jd 要低得多;电子阱通过在正向偏置下捕获光生电子来诱导空穴隧穿注入,从而实现光倍增效应。获得的 OPD 在反向/正向偏置下表现出光导/光倍增工作模式,特异性探测率接近 ≈1013/1012 Jones,显示出自适应检测微弱和强光的潜力。本研究提出了一种实现双模 OPD 的智能策略,为光电探测器的多功能开发铺平了道路。
更新日期:2024-11-11
中文翻译:
双模有机光电二极管正向偏压下的暗电流抑制
为了抑制反向暗电流 (Jd) 并提高有机光电二极管 (OPD) 的响应性,人们开展了大量研究工作。传统 OPD 的功能层通常遵循能级对齐的原理,在反向偏置下使光载流子传输畅通无阻,但这不可避免地导致了较大的正向 Jd。在此,提出了一种通用策略来操纵 OPD 的载流子动力学并有效抑制 OPD 的正向 Jd,即调整阳极界面层 (AIL) 的能级和电子陷阱。通过调整 PEIE 和金属离子的组分比例,可以很好地控制典型有机金属螯合物 AIL (PEIE-Co) 的带隙和电子陷阱。宽禁带增加了反向和正向偏置下的载流子注入势垒,使 OPD 的 Jd 要低得多;电子阱通过在正向偏置下捕获光生电子来诱导空穴隧穿注入,从而实现光倍增效应。获得的 OPD 在反向/正向偏置下表现出光导/光倍增工作模式,特异性探测率接近 ≈1013/1012 Jones,显示出自适应检测微弱和强光的潜力。本研究提出了一种实现双模 OPD 的智能策略,为光电探测器的多功能开发铺平了道路。